String-pulling in Martin’s spot-nosed monkey (Cercopithecus nictitans martini): evidence of physical continuity understanding

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


In this study we tested an adult female Martin’s spot-nosed monkey in several configurations of the string-pulling paradigm, including six different discrimination problems of patterned strings. Our subject solved almost all of the problems presented. Although she seemed to have a spatial preference in the most complex tasks, she maintained a high success rate in almost all of them. She also showed goal-directed behaviour that was not strictly based on visual feedback. Although more research is needed to understand better the subject’s performance, we conclude that she showed clear signs of understanding physical continuity, and some degree of understanding of connectedness and causal relationships.

String-pulling in Martin’s spot-nosed monkey (Cercopithecus nictitans martini): evidence of physical continuity understanding

in Behaviour



AuerspergA.M.I.GajdonG.K.HuberL. (2009). Kea (Nestor notabilis) consider spatial relationships between objects in the support problem. — Biol. Lett. 5: 455-458.

BagotskayaM.S.SmirnovaA.A.ZorinaZ.A. (2012). Corvidae can understand logical structure in baited string-pulling tasks. — Neurosci. Behav. Phys. 42: 36-42.

BalaschJ.Sabater-PiJ.PadrosaT. (1974). Perceptual learning ability in Mandrillus sphinx and Cercopithecus nictitans. — Rev. Esp. Fis. 30: 15-20.

BirdC.D.EmeryN.J. (2009). Rooks use stones to raise the water level to reach a floating worm. — Curr. Biol. 19: 1410-1414.

ChapmanK.M.WeissD.J. (2013). Pulling to scale: motor planning for sequences of repeated actions by cotton-top tamarins (Saguinus oedipus). — J. Exp. Psychol.: Anim. Behav. Proc. 39: 180-186.

EckardtW.ZuberbühlerK. (2004). Cooperation and competition in two forest monkeys. — Behav. Ecol. 15: 400-411.

EdwardsB.RottmanB.SantosD. (2011). The evolutionary origins of causal cognition: learning and using of causal structures. — In: Tool use and causal cognition ( McCormackT.HoerlC.ButterfillS. eds). Oxford University PressNew York, NY p.  111-128.

EmeryN.J. (2006). Cognitive ornithology: the evolution of avian intelligence. — Phil. Trans. Roy. Soc. Lond. B: Biol. Sci. 361: 23-43.

EmeryN.J.ClaytonN.S. (2004a). The mentality of crows: convergent evolution of intelligence in corvids and apes. — Science 306: 1903-1907.

EmeryN.J.ClaytonN.S. (2004b). Comparing the complex cognition of birds and primates. — In: Comparative vertebrate cognition: are primates superior to nonprimates? ( RogersL.J.KaplanG. eds). Kluwer Academic PressNew York, NY p.  3-55.

EmeryN.J.ClaytonN.S. (2009). Tool use and physical cognition in birds and mammals. — Curr. Opin. Neurobiol. 19: 27-33.

FunkM.S. (2002). Problem solving skills in young yellow-crowned parakeets (Cyanoramphus auriceps). — Anim. Cogn. 5: 167-176.

GagneM.LevesqueK.NutileL.LocurtoC. (2012). Performance on patterned strings problems by common marmosets (Callithrix jacchus). — Anim. Cogn. 15: 1021-1030.

HalseyL.G.BezerraB.M.SoutoA.S. (2006). Can wild common marmosets (Callithrix jacchus) solve the parallel strings task? — Anim. Cogn. 9: 229-233.

HauserM.D.KralikJ.Botto-MahanC. (1999). Problem solving and functional design features: experiments on cotton-top tamarins, Saguinus oedipus oedipus. — Anim. Behav. 57: 565-582.

HauserM.D.SantosL.R.SpaepenG.M.PearsonH.E. (2002). Problem solving, inhibition and domain-specific experience: experiments on cottontop tamarins, Saguinus oedipus. — Anim. Behav. 64: 387-396.

HeinrichB. (1995). An experimental investigation of insight in common ravens (Corvus corax). — Auk 112: 994-1003.

HeinrichB.BugnyarT. (2005). Testing problem solving in ravens: string-pulling to reach food. — Ethology 111: 962-976.

HerrmannE.WobberV.CallJ. (2008). Great Ape’s (Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus) understanding of tool functional properties after limited experience. — J. Comp. Psychol. 122: 220-230.

Irie-SugimotoN.KobayashiT.SatoT.HasegawaT. (2008). Evidence of means-end behavior in Asian elephants (Elephas maximus). — Anim. Cogn. 11: 359-365.

JacobsI.F.OsvathM. (2015). The string-pulling paradigm in comparative psychology. — J. Comp. Psychol. 129: 89-120.

KrasheninnikovaA. (2013). Patterned-strings tasks: relation between fine motor skills and visual-spatial abilities in parrots. — PLoS ONE 8: e85499.

KrasheninnikovaA.BrägerS.WankerR. (2013). Means-end comprehension in four parrot species: explained by social complexity. — Anim. Cogn. 16: 755-764.

KraskeninnikovaA.SchneiderJ. (2014). Testing problem-solving capacities: differences between individual testing and social group setting. — Anim. Cogn. 17: 1227-1232.

MacLeanE.L.MathewsL.J.HareB.A.NunnC.L.AndersonR.C.AureliF.BrannonE.M.CallJ.DreaC.M.EmeryN.J.HaunD.B.M.HerrmannE.JacobsL.F.PlattM.L.RosatiA.G.SandelA.A.SchroepferK.K.SeedA.M.TanJ.van SchaikC.P.WobberV. (2012). How does cognition evolve? Phylogenetic comparative psychology. — Anim. Cogn. 15: 223-238.

MayerC.CallJ.Albiach-SerranoA.VisalberghiE.SabbatiniG.SeedA. (2014). Abstract knowledge in the broken-string problem: evidence from nonhuman primates and pre-schoolers. — PLoS ONE 9(10): e108597.

ObozovaT.A.BagotskayaM.S.SmirnovaA.A.ZorinaZ.A. (2014). A comparative assessment of birds’ ability to solve string-pulling tasks. — Biol. Bull. 41: 565-574.

OsthausB.LeaS.E.M.SlaterA.M. (2005). Dogs (Canis lupus familiaris) fail to show understanding of means-end connections in a string-pulling task. — Anim. Cogn. 8: 37-47.

PepperbergI.M. (2004). ‘Insightful’ string-pulling in grey parrots (Psittacus erithacus) is affected by vocal competence. — Anim. Cogn. 7: 263-266.

PovinelliD.J. (2000). Folk physics for apes. — Oxford University PressNew York, NY.

RangeF.MöslingerH.VirányiZ. (2012). Domestication has not affected the understanding of means-end connections in dogs. — Anim. Cogn. 15: 597-607.

RiemerS.MüllerC.RangeF.HuberF. (2013). Dogs (Canis familiaris) can learn to attend to connectivity in string pulling tasks. — J. Comp. Psychol. 128: 31-38.

SantosL.R.PearsonH.M.SpaepenG.M.TsaoF.HauserH.D. (2006). Probing the limits of tool competence: experiments with two non-tool-using species (Cercopithecus aethiops and Saguinus oedipus). — Anim. Cogn. 9: 94-109.

SchmidtG.F.CookR.G. (2006). Mind the gap: means-end discrimination by pigeons. — Anim. Behav. 71: 599-608.

Schuck-PaimC.BorsariA.OttoniE.B. (2009). Means to an end: Neotropical parrots manage to pull strings to meet their goals. — Anim. Cogn. 12: 287-301.

SeedA.M.BoogertN.J. (2012). Animal cognition: an end to insight? — Curr. Biol. 23: R67-R69.

SeibtU.WicklerW. (2006). Individuality in problem solving: string pulling in two Carduelis species (Aves: Passeriformes). — Ethology 112: 493-502.

ShettleworthS.J. (2009). Animal cognition: deconstructing avian insight. — Curr. Biol. 19: R1039-R1040.

ShettleworthS.J. (2012). Do animals have insight, and what is insight anyway? — Can. J. Exp. Psychol. 66: 217-226.

ShumakerR.W.WalkupK.R.BeckB.B. (2011). Animal tool behavior: the use and manufacture of tools by animals. — The Johns Hopkins University PressBaltimore, MD.

SilvaF.J.SilvaK.M.CoverK.R.LeslieL.A.RubalcabaM.A. (2008). Humans’ folk physics is sensitive to physical connection and contact between a tool and reward. — Behav. Proc. 77: 327-333.

TaylorA.H.MedinaF.S.HolzhaiderJ.D.HearneL.J.HuntG.R.GrayR.D. (2010). An investigation into the cognition behind spontaneous string pulling in New Caledonian crows. — PLoS ONE 5: e9345.

TaylorA.H.KnaebeB.GrayR.D. (2012). An end to insight? New Caledonian crows can spontaneously solve problems without planning their actions. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 4977-4981.

TebbichS.SeedA.M.EmeryN.J.ClaytonN.S. (2007). Non-tool-using rooks, Corvus frugilegus, solve the trap-tube problem. — Anim. Cogn. 10: 225-231.

ThorpeW.H. (1956). Learning and instinct in animals. — MethuenLondon.

VölterC.J.CallJ. (2012). Problem solving in great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, and Pongo abelii): the effect of visual feedback. — Anim. Cogn. 15: 923-936.

WerdenichD.HuberL. (2006). A case of quick solving in birds: string pulling in keas, Nestor notabilis. — Anim. Behav. 71: 855-863.

WhittE.DouglasM.OsthausB.HockingI. (2009). Domestic cats (Felis catus) do not show causal understanding in a string-pulling task. — Anim. Cogn. 12: 739-743.


  • View in gallery

    Photograph of the experimental apparatus placed in front of the subjects’ home cage. A rewarded chain lies over the surface of the lower wall of the box shaped apparatus. The video camera on a tripod is located near the open side of the apparatus.

  • View in gallery

    Outline of the different experimental configurations presented in this study. Exp. 1, standard string-pulling; Exp. 2, parallel chains; Exp. 3, slanted chains; Exp. 4, L-shaped chain; Exp. 5 and 6, crossed chains (of a single colour and of two different colours); Exp. 7, connected versus disconnected chain; Exp. 8, visually restricted string-pulling. The black lines represent the chains, the black circles represent the reward, the black parallelogram represents the visual barrier and the white rectangles represent the bottom table of the experimental apparatus.

  • View in gallery

    Success rate (expressed in %) for the subject in Experiments 2 to 7. The black column represents the percentages when considering only the subject’s first choice. The striped column represents the percentages when considering the subject’s second choices, in the event that they occurred (p<0.05; ∗∗p<0.001).

  • View in gallery

    Left-side bias rate (expressed in %) for the subject in Experiments 2 to 7. The white column represents the percentage of trials in Experiment 2 in which she pulled as her first choice the chain located on the left side. The other columns represent this percentage in the other experiments: dotted white column for Experiment 3, vertically striped column for Experiment 4, horizontally striped for Experiment 5, dotted black column for Experiment 6 and black column for Experiment 7 (p<0.05; ∗∗p<0.001).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 13 13 5
Full Text Views 6 6 6
PDF Downloads 2 2 2
EPUB Downloads 0 0 0