Personality is correlated with natal dispersal in North American red squirrels (Tamiasciurus hudsonicus)

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Individual natal dispersal behaviour is often difficult to predict as it can be influenced by multiple extrinsic and intrinsic factors. Individual differences in personality have been shown to be an important correlate of dispersal behaviour. However, the relationships between personality traits and dispersal are often inconsistent within and across studies and the causes of these discrepancies are often unknown. Here we sought to determine how individual differences in activity and aggression, as measured in an open-field trial, were related to natal dispersal distance in a wild population of North American red squirrels (Tamiasciurus hudsonicus). For 14 cohorts, while individual aggression consistently had no association with dispersal distance, the association between activity and dispersal fluctuated through time, mediated by population density. The environmental-dependence of the relationship between personality and dispersal in this population is indicative of the importance of considering external conditions when predicting dispersal behaviour.

Sections

References

AguillonS.DuckworthR. (2015). Kin aggression and resource availability influence phenotype-dependent dispersal in a passerine bird. — Behav. Ecol. Sociobiol. 69: 625-633.

BatesD.MaechlerM.BolkerB.WalkerS. (2014). lme4: linear mixed-effects models using eigen and S4. — R package version 1.1-6. R Project for Statistical Computing, Vienna, available online at http://cran.r-project.org/package=lme4.

BellA.M. (2007). Future directions in behavioural syndromes research. — Proc. Roy. Soc. Lond. B: Biol. Sci. 274: 755-761.

BerteauxD.BoutinS. (2000). Breeding dispersal in female North American red squirrels. — Ecology 81: 1311-1326.

BlumsteinD.DanielJ. (2007). Quantifying behaviour the Jwatcher Way. — Sinauer Associates, Sunderland, MA.

BonteD.LensL.MaelfaitJ. (2004). Lack of homeward orientation and increased mobility result in high emigration rates from low-quality fragments in a dune wolf spider. — J. Anim. Ecol. 73: 643-650.

BoonA.RéaleD.BoutinS. (2007). The interaction between personality, offspring fitness and food abundance in North American red squirrels. — Ecol. Lett. 10: 1094-1104.

BoonA.RéaleD.BoutinS. (2008). Personality, habitat use, and their consequences for survival in North American red squirrels Tamiasciurus hudsonicus. — Oikos 117: 1321-1328.

BoutinS.PriceK. (1993). Post-breeding dispersal by female red squirrels (Tamiasciurus hudsonicus): the effect of local vacancies. — Behav. Ecol. 4: 151-155.

BoutinS.KrebsC.BoonstraR.DaleM.HannonS.MartinK.SinclairA.SmithJ.TurkingtonR.BlowerM.ByromA.DoyleF.HikD.HoferL.HubbsA.KarelsT.MurrayD.NamsV.O’DonoghueM.RohnerC.SchweigerS. (1995). Population changes of the vertebrate community during a snowshoe hare cycle in Canada’s boreal forest. — Oikos 74: 69-80.

Bremner-HarrisonS.ProdohlP.ElwoodR. (2004). Behavioural trait assessment as a release criterion: boldness predicts early death in a reintroduction programme of captive-bred Swift fox (Vulpes velox). — Anim. Conserv. 7: 313-320.

CareauV.ThomasD.HumphriesM.M.RéaleD. (2008). Energy metabolism and animal personality. — Oikos 117: 641-653.

ClobertJ.Le GalliardJ.CoteJ.MeylanS.MassotM. (2009). Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structure populations. — Ecol. Lett. 12: 197-209.

CoteJ.ClobertJ. (2007). Social personalities influence natal dispersal in a lizard. — Proc. Roy. Soc. Lond. B: Biol. Sci. 383-390.

CoteJ.ClobertJ.BrodinT.FogartyS.SihA. (2010). Personality-dependent dispersal: characterization, ontogeny and consequences for spatially structures populations. — Proc. Roy. Soc. Lond. B: Biol. Sci. 365: 4065-4076.

CoteJ.FogartyS.BrodinT.WeinersmithK.SihA. (2011). Personality-dependent dispersal in the invasive mosquitofish: group composition matters. — Proc. Roy. Soc. Lond. B: Biol. Sci. 278: 1670-1678.

CoteJ.FogartyS.TymenB.SihA.BrodinT. (2013). Personality-dependent dispersal cancelled under predation risk. — Proc. Roy. Soc. Lond. B: Biol. Sci. 280: 2349-2358.

DantzerB.NewmanA.E.M.BonnstraR.RupertP.BoutinS.HumphriesM.M.McAdamA.G. (2013). Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. — Science 340: 1215-1217.

DebeffeL.MorelletN.BonnotN.GaillardJ.CargneluttiB.VergeydenH.VanpeA.CoulonJ.ClobertR.BonA.HewisonJ. (2014). The link between behavioural type and natal dispersal propensity reveals a dispersal syndrome in a large herbivore. — Proc. Roy. Soc. Lond. B: Biol. Sci. 281: 873-891.

DingemanseN.BothC.DrentP.OersK.V.van NoordwijkA. (2002). Repeatability and heritability of exploratory behaviour in great tits from the wild. — Anim. Behav. 64: 929-938.

DingemanseN.BothC.van NoordwijkA.RuttenA.DrentP. (2003). Natal dispersal and personalities in Great Tits (Parus major). — Proc. Roy. Soc. Lond. B: Biol. Sci. 270: 741-747.

DingemanseN.BothC.DrentP.TinbergenJ. (2004). Fitness consequences of avian personalities in a fluctuating environment. — Proc. Roy. Soc. Lond. B: Biol. Sci. 271: 847-852.

DuckworthR.BadyaevA. (2007). Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. — Proc. Natl. Acad. Sci. USA 104: 15017-15022.

FletcherQ.E.BoutinS.LaneJ.E.LamontagneJ.M.McAdamA.G.KrebsC.J.HumphriesM.M. (2010). The functional response of a hoarding seed predator to mast seeding. — Ecology 91: 2673-2683.

GreenwoodP.J. (1980). Mating systems, philopatry and dispersal in birds and mammals. — Anim. Behav. 28: 1140-1162.

GuerraP.PollackG. (2010). Colonists and desperadoes: different fighting strategies in wing-dimorphic male Texas field crickets. — Anim. Behav. 79: 1087-1093.

HadfieldJ.D. (2008). Estimating evolutionary parameters when viability selection is operating. — Proc. Roy. Soc. Lond. B: Biol. Sci. 275: 723-734.

HaughlandD.LarsenK. (2004). Exploration correlates with settlement: red squirrel dispersal in contrasting habitats. — J. Anim. Ecol. 73: 1024-1034.

JohnsonM.GainesM.L. (1990). Evolution of dispersal: theoretical models and empirical tests using birds and mammals. — Annu. Rev. Ecol. Evol. Syst. 21: 449-480.

KelleyA. (2014). Development, stability, and consequence of personality in the juvenile red squirrel (Master’s thesis). — Available online at https://era.library.ualberta.ca/files/t435gg614/Kelley_Amanda_D_201404_MSc.pdf.

KelleyA.HumphriesM.McAdamA.BoutinS. (2015). Changes in wild red squirrel personality across ontogeny: activity and aggression regress towards the mean. — Behaviour 152: 1291-1306.

KoolhaasJ.M.KorteS.M.de BoerS.F.van der VegtB.J.van ReenenC.G.HopsterH.de JongI.C.RuisM.A.BlokhuisH.J. (1999). Coping styles in animals: current status in behavior and stress-physiology. — Neurosci. Biobehav. Rev. 23: 925-935.

KuznetsovaA.BrockhoffP.HauboR.ChristensenB. (2016). lmerTest: tests in linear mixed effects models. — R package version 2.0-30. R Project for Statistical Computing, Vienna, available online at http://cran.r-project.org/package=lmerTest.

LamontagneJ.M.BoutinS. (2007). Local-scale synchrony and variability in mast seed production patterns of Picea glauca. — J. Ecol. 95: 991-1000.

LamontagneJ.M.PetersS.BoutinS. (2005). A visual index for estimating cone production for individual white spruce trees. — Can. J. For. Res. 35: 3020-3026.

LamontagneJ.M.WilliamsC.T.DonaldJ.L.HumphriesM.M.McAdamA.G.BoutinS. (2013). Linking intraspecific variation in territory size, cone supply, and survival of North American red squirrels. — J. Mammal 94: 1048-1058.

LaneJ.McAdamA.CharmantierA.HumphriesM.ColtmanD.FletcherQ.GorrellJ.BoutinS. (2015). Post-weaning parental care increases fitness but is not heritable in North American red squirrels. — J. Evol. Biol. 28: 1203-1212.

LarsenK.W.BoutinS. (1994). Movements, survival, and settlement of red squirrel (Tamiasciurus hudsonicus) offspring. — Ecology 75: 214-223.

LarsenK.W.BoutinS. (1995). Exploring territory quality in the North American red squirrel through removal experiments. — Can. J. Zool. 73: 1115-1122.

MartinJ.RéaleD. (2008). Temperament, risk assessment and habituation to novelty in eastern chipmunks, Tamias striatus. — Anim. Behav. 75: 309-318.

McAdamA.BoutinS. (2003). Variation in viability selection among cohorts of juvenile red squirrels (Tamiasciurus hudsonicus). — Evolution 57: 1689-1697.

McAdamA.BoutinS.SkyesA.HumphriesM. (2007). Life histories of female red squirrels and their contributions to population growth and lifetime fitness. — Écoscience 14: 362-369.

MerrickM.J.KoprowskiJ.L. (2017). Altered natal dispersal at the range periphery: the role of behaviour, resources, and maternal condition. — Ecol. Evol. 7: 58-72.

MyersJ.KrebsC. (1971). Genetic, behavioural, and reproductive attributes of dispersing field voles Microtus pennsylvanicus and Microtus ochrogaster. — Ecol. Monogr. 41: 53-78.

PocokM.HauffeH.SearleJ. (2005). Dispersal in house mice. — Biol. J. Linn. Soc. 84: 565-583.

PriceK.BroughtonK.BoutinS.SinclairA.R.E. (1986). Territory size and ownership in red squirrels: response to removals. — Can. J. Zool. 64: 1144-1147.

R Core Team (2014). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna, Austria, available online at http://www.R-project.org/.

RéaleD.ReaderS.M.SolD.McdougallP.T.DingemanseN.J. (2007). Integrating animal temperament within ecology and evolution. — Biol. Rev. 82: 291-318.

SchradinC.LamprechtJ. (2002). Causes of female emigration the group living cichlid fish Neolamprologus multifasciatus. — Ethology 108: 237-248.

SihA.CoteJ.EvansM.PruittJ. (2012). Ecological implications of behavioural syndromes. — Ecol. Lett. 15: 278-289.

SmithC.C. (1968). The adaptive nature of social organization in the genus of three squirrels Tamiasciurus. — Ecol. Monogr. 38: 31-64.

SmithC.C. (1978). Structure and function of the vocalizations of tree squirrels (Tamiasciurus). — J. Mammal. 59: 793-808.

SpiegelO.LeuS.T.BullC.M.SihA. (2017). What’s your move? Movement as a link between personality and spatial dynamics in animal populations. — Ecol. Lett. 20: 3-18.

SteeleM.A. (1998). Tamiasciurus hudsonicus. — Mammal. Species 586: 1-9.

StensethN.C.LidickerW.Z. (1992). The genetic consequences of dispersal. — In: Animal dispersal: small mammals as a model ( StensethN.C.LidickerW.Z., eds). Springer, Dordrecht, p.  37-55.

SvendsenG.ArmitageK. (1973). Mirror-image stimulation applied to field behavioural studies. — Ecology 54: 623-627.

TaylorR.BoonA.DantzerB.RéaleD.HumphriesM.BoutinS.GorrellJ.C.ColtmanD.W.McAdamA.G. (2012). Low heritabilities, but genetic and maternal correlations between red squirrel behaviours. — Evol. Biol. 25: 614-624.

TaylorR.BoutinS.HumphriesM.McAdamA. (2014). Selection on female behaviour fluctuates with offspring environment. — J. Evol. Biol. 27: 2308-2321.

TimmN.H. (2002). Applied multivariate analysis. — Springer, New York, NY.

TruhlarA.AldridgeD. (2015). Differences in behavioural traits between two potentially invasive amphipods, Dikerogammarus villosus and Gammarus pulex. — Biol. Invasions 17: 1569-1579.

WalshR.N.CumminsR.A. (1976). The open-field test: a critical review. — Psychol. Bull. 83: 482-504.

WeyT.W.SpiegelO.MontiglioP.O.MabryK.E. (2015). Natal dispersal in a social landscape: considering individual behavioral phenotypes and social environment in dispersal ecology. — Curr. Zool. 61: 543-556.

WolfM.van DoornG.LeimarO.WeissingF.J. (2007). Life-history trade-offs favour the evolution of animal personalities. — Nature 447: 581-584.

ZavorkaL.AldvenD.NaslundJ.HojesjoJ.JohnssonJ. (2015). Linking lab activity with growth and movement in the wild: explaining pace-of-life in a trout stream. — Behav. Ecol. 26: 877-884.

Figures

  • The effect of activity on log-transformed dispersal distance in a model containing (top panel) all individuals (N=176) (centre panel) individuals born in a year of above median population density (N=101) and (bottom panel) individuals born in a year of below median population density (N=75).

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 25 25 14
Full Text Views 10 10 8
PDF Downloads 3 3 3
EPUB Downloads 2 2 0