Vocalizations associated with predator-type do not elicit predator-specific escape responses in grey squirrels

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Eastern gray squirrels produce moans for aerial predators and quaas for terrestrial threats. One commonly-supported hypothesis for such predator-associated signals is that they elicit predator-specific escape responses in conspecifics. With simulated aerial predators, squirrels ran to the far side of tree trunks. In response to simulated terrestrial predators, squirrels frequently ran to where they could see the predator but could quickly flee to the far side of the tree trunk. Playbacks of quaas and moans elicited flight behaviour, but without association between escape location and alarm call type. Locations elicited by alarm calls differed from those elicited by simulated predators, with squirrels pausing on the side facing the call’s source. While grey squirrel alarms and escape strategies differ by predator type, the vocalizations do not function to elicit divergent escape strategies in conspecifics. This result stands in contrast to observed functions in other species with calls differing by predator type.

Vocalizations associated with predator-type do not elicit predator-specific escape responses in grey squirrels

in Behaviour



BarbourM.A.ClarkR.W. (2012). Ground squirrel tail-flag displays alter both predatory strike and ambush site selection behaviours of rattlesnakes. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 3827-3833. DOI:10.1098/rspb.2012.1112.

BlumsteinD.T. (1999). Alarm calling in three species of marmots. — Behaviour 136: 731-757.

ClarkR.W. (2005). Pursuit-deterrent communication between prey animals and timber rattlesnakes (Crotalus horridus): the response of snakes to harassment displays. — Behav. Ecol. Sociobiol. 59: 258-261. DOI:10.1007/s00265-005-0032-9.

DigweedS.M.RendallD. (2009a). Predator-associated vocalizations in North American red squirrels, Tamiasciurus hudsonicus: are alarm calls predator specific?Anim. Behav. 78: 1135-1144. DOI:10.1016/j.anbehav.2009.07.030.

DigweedS.M.RendallD. (2009b). Predator-associated vocalizations in North American red squirrels (Tamiasciurus hudsonicus): to whom are alarm calls addressed and how do they function?Ethology 115: 1190-1199. DOI:10.1111/j.1439-0310.2009.01709.x.

EvansC.S.EvansL.MarlerP.M. (1993). On the meaning of alarm calls: functional reference in an avian vocal system. — Anim. Behav. 46: 23-38.

FichtelC.KappelerP.M. (2002). Anti-predator behavior of group-living Malagasy primates: mixed evidence for a referential alarm call system. — Behav. Ecol. 51: 262-275. DOI:10.1007/s00265-001-0436-0.

FurrerR.D.ManserM.B. (2009). The evolution of urgency-based and functionally referential alarm calls in ground-dwelling species. — Am. Nat. 173: 400-410. DOI:10.1086/596541.

KirchhofJ.HammerschmidtK. (2006). Functionally referential alarm calls in tamarins (Saguinus fuscicollis and Saguinus mystax) — evidence from playback experiments. — Ethology 112: 346-354. DOI:10.1111/j.1439-0310.2006.01165.x.

KiriazisJ.SlobodchikoffC.N. (2006). Perceptual specificity in the alarm calls of Gunnison’s prairie dogs. — Behav. Proc. 73: 29-35. DOI:10.1016/j.beproc.2006.01.015.

KroodsmaD.E.ByersB.E.GoodaleE.JohnsonS.LiuW.-C. (2001). Pseudoreplication in playback experiments, revisited a decade later. — Anim. Behav. 61: 1029-1033. DOI:10.1006/anbe.2000.1676.

LishakR.S. (1984). Alarm vocalizations of adult gray squirrels. — J. Mammal. 65: 681-684. DOI:10.2307/1380852.

MacedoniaJ.M. (1990). What is communicated in the antipredator calls of lemurs: evidence from playback experiments with ringtailed and ruffed lemurs. — Ethology 86: 177-190. DOI:10.1111/j.1439-0310.1990.tb00428.x/abstract.

MacedoniaJ.M.EvansC.S. (1993). Variation among mammalian alarm call systems and the problem of meaning in animal signals. — Ethology 93: 177-197. DOI:10.1111/j.1439-0310.1993.tb00988.x.

MacWhirterR.B.B. (1992). Vocal and escape responses of Columbian ground squirrels to simulated terrestrial and aerial predator attacks. — Ethology 91: 311-325. DOI:10.1111/j.1439-0310.1992.tb00872.x/abstract.

ManserM.B.BellM.B.FletcherL.B. (2001). The information that receivers extract from alarm calls in suricates. — Proc. Roy. Soc. Lond. B: Biol. Sci.. 268: 2485-2491. DOI:10.1098/rspb.2001.1772.

MarlerP.M.EvansC.S.HauserM.D. (1992). Animal signals: motivational, referential, or both?. — In: Nonverbal vocal communication: comparative and developmental approaches. Studies in emotion and social interaction ( PapoušekH.JürgensU.PapoušekM. eds). Cambridge University PressNew York, NY p.  66-86.

McRaeT.R. (2012). Predator-specificity of multimodal alarm signals in the eastern gray squirrel (Sciurus carolinensis). — University of MiamiCoral Gables, FL.

McRaeT.R.GreenS.M. (2014). Joint tail and vocal alarm signals of gray squirrels (Sciurus carolinensis). — Behaviour 151: 1433-1452. DOI:10.1163/1568539X-00003194.

McRaeT.R.GreenS.M. (2015). Gray squirrel alarm call composition differs in response to simulated aerial versus terrestrial predator attacks. — Ethol. Ecol. Evol. 9370: 1-10. DOI:10.1080/03949370.2015.1087433.

PartanS.R.FulmerA.G.GounardM.A.M.RedmondJ.E. (2010). Multimodal alarm behavior in urban and rural gray squirrels studied by means of observation and a mechanical robot. — Curr. Zool. 56: 313-326.

PartanS.R.LarcoC.P.OwensM.J. (2009). Wild tree squirrels respond with multisensory enhancement to conspecific robot alarm behaviour. — Anim. Behav. 77: 1127-1135. DOI:10.1016/j.anbehav.2008.12.029.

RundusA.S.OwingsD.H.JoshiS.S.ChinnE.GianniniN. (2007). Ground squirrels use an infrared signal to deter rattlesnake predation. — Proc. Natl Acad. Sci. USA 104: 14372-14376. DOI:10.1073/pnas.0702599104.

SchelA.M.CandiottiA.ZuberbühlerK. (2010). Predator-deterring alarm call sequences in Guereza colobus monkeys are meaningful to conspecifics. — Anim. Behav. 80: 799-808. DOI:10.1016/j.anbehav.2010.07.012.

SeyfarthR.M.CheneyD.L. (1990). The assessment by vervet monkeys of their own and another species’ alarm calls. — Anim. Behav. 40: 754-764.

SeyfarthR.M.CheneyD.L.MarlerP.M. (1980). Vervet monkey alarm calls: semantic communication in a free-ranging primate. — Anim. Behav. 28: 1070-1094.

SlobodchikoffC.N.KiriazisJ.FischerC.CreefE. (1991). Semantic information distinguishing individual predators in the alarm calls of Gunnison’s prairie dogs. — Anim. Behav. 42: 713-719.

StruhsakerT.T. (1967). Auditory communication among vervet monkeys (Cercopithecus aethiops). — In: Social communication among primates ( AltmannS.A. ed.). The University of Chicago PressChicago, IL p.  281-324.

SuzukiT.N. (2016). Semantic communication in birds: evidence from field research over the past two decades. — Ecol. Res. 31: 307-319. DOI:10.1007/s11284-016-1339-x.

ZuberbühlerK. (2000). Referential labelling in Diana monkeys. — Anim. Behav. 59: 917-927. DOI:10.1006/anbe.1999.1317.

ZuberbühlerK. (2001). Predator-specific alarm calls in Campbell’s monkeys, Cercopithecus campbelli. — Behav. Ecol. Sociobiol. 50: 414-422. DOI:10.1007/s002650100383.

ZuberbühlerK.JennyD.BsharyR. (1999). The predator deterrence funtion of primate alarm calls. — Ethology 105: 477-490. DOI:10.1046/j.1439-0310.1999.00396.x.


  • View in gallery

    Three categories of location on trunk relative to threat. This diagram represents the view from above immediately after a stimulus object has stopped moving. The circle represents the trunk of a tree in cross-section, with the two intersecting lines dividing its surface into four quadrants. A squirrel could flee to any of four quadrants on the trunk surface, which were classified into three categories: (A) near, the quadrant of the tree facing the stimulus; (B) midway, the two quadrants midway around the tree trunk relative to the stimulus; (C) far, the quadrant farthest from the stimulus object, with the trunk between the squirrel and the stimulus.

  • View in gallery

    Time to reach tree trunk in response to aerial versus terrestrial stimuli. Focal squirrels’ latencies to reach the trunk after release of the stimulus object differed based on stimulus type (MWU exact test: U=128, p<0.0001). Latencies to reach the trunk were shorter in response to aerial stimuli (N=33) than in response to terrestrial stimuli (N=36).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 10
Full Text Views 10 10 10
PDF Downloads 2 2 2
EPUB Downloads 0 0 0