Clonal fish are more aggressive to distant relatives in a low resource environment

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Kin selection explains conditions under which closely related individuals should be less antagonistic towards one another. One benefit of kin selection is a reduction in aggression towards kin in various social contexts, such as foraging. In the gynogenetic Amazon molly, females have been shown to differentiate between clone types, preferring to associate with clonal sisters to non-sisters, regulating their aggressive behaviours accordingly. We ask if Amazon mollies in resource-limited environments retain the ability to regulate aggressive behaviours according to relatedness. We found that focal females regulated their aggressive behaviours depending on partner type. Females spent more time behaving aggressively towards the heterospecific females than either of the clonal lineages, and towards non-sister clones compared to clonal sisters. We are able to confirm that kin discrimination is maintained, resulting in females showing more aggression towards heterospecific females and non-sister clones in a food-limited environment, and that this aggression scales with relatedness.

Clonal fish are more aggressive to distant relatives in a low resource environment

in Behaviour

Sections

References

AbbotP.AbeJ.AlcockJ.AlizonS.AlpedrinhaJ.A.AnderssonM.et al. (2011). Inclusive fitness theory and eusociality. — Nature 471: E1-E4. DOI:10.1038/nature09831.

ArnottG. & ElwoodR. (2009). Assessment of fighting ability in animal contests. — Anim. Behav. 77: 991-1004. DOI:10.1016/j.anbehav.2009.02.010.

BelisleP. & ChapaisB. (2001). Tolerated co-feeding in relation to degree of kinship in Japanese macaques. — Behaviour 138: 487-509.

BierbachD.LaskowskiK.L. & WolfM. (2017). Behavioural individuality in clonal fish arises despite near-identical rearing conditions. — Naturre Commun. 8: 15361.

BoomsmaJ.J.BeekmanM.CornwallisC.K.GriffinA.S.HolmanL.HughesW.O.H.et al. (2011). Only full-sibling families evolved eusociality. — Nature 471: E4-E5. DOI:10.1038/nature09832.

BrownG.E. & BrownJ.A. (1996). Does kin-biased territorial behavior increase kin-biased foraging in juvenile salmonids?Behav. Ecol. 7: 24-29. DOI:10.1093/beheco/7.1.24.

CornwallisC.K.WestS.A. & GriffinA.S. (2009). Routes to indirect fitness in cooperatively breeding vertebrates: kin discrimination and limited dispersal. — J. Evol. Biol. 22: 2445-2457. DOI:10.1111/j.1420-9101.2009.01853.x.

FerriereR. & MichodR.E. (2011). Inclusive fitness in evolution. — Nature 471: E6-E8. DOI:10.1038/nature09834.

GrantJ.W.A.GirardI.L.BreauC. & WeirL.K. (2002). Influence of food abundance on competitive aggression in juvenile convict cichlids. — Anim. Behav. 63: 323-330.

GriffithsS.W. & ArmstrongJ.D. (2002). Kin-biased territory overlap and food sharing among Atlantic salmon juveniles. — J. Anim. Ecol. 71: 480-486. DOI:10.1046/j.1365-2656.2002.00614.x.

HaldaneJ.B.S. (1955). Population genetics. — New Biol. 18: 34-51.

HamiltonW.D. (1964a). The genetical evolution of social behaviour I. — J. Theor. Biol. 7: 1-16.

HamiltonW.D. (1964b). The genetical evolution of social behaviour II. — J. Theor. Biol. 7: 17-52.

HamiltonW.D. (1971). Selection of selfishness and altruistic behaviour in some extreme models. — In: Man and beast: comparative social behaviour (EisenbergJ.F. & DillonW.S. eds). Smithsonian PressWashington, DC p. 57-91.

HerreE.A. & WcisloW.T. (2011). In defence of inclusive fitness theory. — Nature 471: E8-E9. DOI:10.1038/nature09835.

HeubelK.U. & PlathM. (2008). Influence of male harassment and female competition on female feeding behaviour in a sexual-asexual mating complex of mollies (Poecilia mexicana, P. formosa). — Behav. Ecol. Sociobiol. 62: 1689-1699. DOI:10.1007/s00265-008-0597-1.

HubbsC.L. & HubbsL.C. (1932). Apparent parthenogenesis in nature in a form of fish of hybrid origin. — Science 76: 628-630. DOI:10.1126/science.76.1983.628.

KronauerD.J.C.TsujiK.PierceN.E. & KellerL. (2013). Non-nestmate discrimination and clonal colony structure in the parthenogenetic ant Cerapachys biroi. — Behav. Ecol. 24: 617-622. DOI:10.1093/beheco/ars227.

LaskowskiK.L.WolfM. & BierbachD. (2016). The making of winners (and losers): how early dominance interactions determine adult social structure in a clonal fish. — Proc. Roy. Soc. Lond. B: Biol. Sci. 283: 20160183. DOI:10.1098/rspb.2016.0183.

LimR.S.EyjólfdóttirE.ShineE.PeronaP. & AndersonD.J. (2014). How food controls aggression in Drosophila. — PLOS One 9: e105626.

LoughryW.J. & McDonoughC.M. (2013). The nine-banded armadillo. — University of Oklahoma PressNorman, OK.

Lucon-XiccatoT. & BisazzaA. (2017). Individual differences in cognition among teleost fishes. — Behav. Process. 141: 184-195.

MakowiczA.M. & SchluppI. (2015). Effects of female–female aggression in a sexual/unisexual species complex. — Ethology 121: 904-914. DOI:10.1111/eth.12406.

MakowiczA.M.TiedemannR.SteeleR.N. & SchluppI. (2016). Kin recognition in a clonal fish, Poecilia formosa. — PLOS One 11: e0158442.

Miller IIID.G. (1998). Consequences of communal gall occupation and a test for kin discrimination in the aphid Tamalia coweni (Cockerell) (Homoptera: Aphididae). — Behav. Ecol. Sociobiol. 43: 95-103. DOI:10.1007/s002650050471.

MuratoriF.B.RouyarA. & HanceT. (2014). Clonal variation in aggregation and defensive behavior in pea aphids. — Behav. Ecol. 25: 901-908. DOI:10.1093/beheco/aru064.

NowakM.A.TarnitaC.E. & WilsonE.O. (2010). The evolution of eusociality. — Nature 466: 1057-1062. DOI:10.1038/nature09205.

OlsénK.H. & JärviT. (1997). Effects of kinship on aggression and RNA content in juvenile Arctic charr. — J. Fish Biol. 51: 422-435. DOI:10.1111/j.1095-8649.1997.tb01676.x.

PfenningD.W.ReeveH.K. & ShermanP.W. (1993). Kin recognition and cannibalism in spadefoot toad tadpoles. — Anim. Behav. 46: 87-94. DOI:10.1006/anbe.1993.1164.

PlathM.MakowiczA.M.SchluppI. & ToblerM. (2007). Sexual harassment in livebearing fishes (Poeciliidae): comparing courting and non-courting species. — Behav. Ecol. 18: 680-688. DOI:10.1093/beheco/arm030.

QuellerD.C. (1992). Does population viscosity promote kin selection?Trends Ecol. Evol. 7: 322-324. DOI:10.1016/0169-5347(92)90120-Z.

SchartlM.WildeB.SchluppI. & ParzefallJ. (1995). Evolutionary orgin of a parthenoform, the Amazon molly, Poecilia formosa, on the basis of a molecular genealogy. — Evolution 49: 827-835. DOI:10.2307/2410406.

SchluppI. (2005). The evolutionary ecology of gynogenesis. — Annu. Rev. Ecol. Evol. Syst. 36: 399-417.

SchluppI.ParzefallJ. & SchartlM. (1991). Male mate choice in mixed bisexual/unisexual breeding complexes of Poecilia (Teleostei: Poeciliidae). — Ethology 88: 215-222. DOI:10.1111/j.1439-0310.1991.tb00276.x.

SchluppI. & RieschR. (2011). Evolution of unisexual reproduction. — In: Ecology and evolution of Poeciliid fishes (EvansJ.PilastroA. & SchluppI. eds). University of Chicago PressChicago, IL p. 50-58.

SegoliM.KeasarT.HarariA.R. & BouskilaA. (2009). Limited kin discrimination abilities mediate tolerance toward relatives in polyembryonic parasitoid wasps. — Behav. Ecol. 20: 1262-1267. DOI:10.1093/beheco/arp125.

StöckM.LampertK.P.MöllerD.SchluppI. & SchartlM. (2010). Monophyletic origin of multiple clonal lineages in an asexual fish (Poecilia formosa). — Mol. Ecol. 19: 5204-5215. DOI:10.1111/j.1365-294X.2010.04869.x.

StrassmannJ.E.Page JrR.E.RobinsonG.E. & SeeleyT.D. (2011). Kin selection and eusociality. — Nature 471: E5-E6. DOI:10.1038/nature09833.

Utne-PalmA.C. & HartP.J.B. (2000). The effects of familiarity on competitive interactions between threespined sticklebacks. — Oikos 91: 225-232. DOI:10.1034/j.1600-0706.2000.910203.x.

WaldmanB. (1988). The ecology of kin recognition. — Annu. Rev. Ecol. Evol. Syst. 19: 543-571.

WarrenW.C.Garcia-PerezR.XuS.LampertK.P.ChalopinD.StockM.LoeweL.LuY.KudernaL.MinxP.MontagueM.J.TomlinsonC.HillierL.W.MurphyD.N.WangJ.WangZ.GarciaC.M.ThomasG.C.W.VolffJ.FariasF.AkenB.WalterR.B.PruittK.D.Marques-BonetT.HahnM.W.KneitzS.LynchM. & SchartlM. (2018). Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. — Nature Ecol. Evol. 2: 669-679. DOI:10.1038/s41559-018-0473-y.

WeißC.KramerJ.HolländerK. & MeunierJ. (2014). Influences of relatedness, food deprivation, and sex on adult behaviors in the group-living insect Forficula auricularia. — Ethology 120: 923-932.

WinsorG.L. & InnesD.J. (2002). Sexual reproduction in Daphnia pulex (Crustacea: Cladocera): observations on male mating behaviour and avoidance of inbreeding. — Freshw. Biol. 47: 441-450. DOI:10.1046/j.1365-2427.2002.00817.x.

Figures

  • View in gallery

    The amount of time (s) females spent behaving aggressively (A), the number of bites (B) and tail beats given to partner females (C). The time focal females spent behaving aggressively was higher when paired with either a heterospecific female (yellow) or a non-sister clone (red) when compared to clonal sisters (blue). Focal females gave more bites to heterospecific females and non-sister clones and less to clonal sisters, while they performed more tail beats to heterospecific females.

  • View in gallery

    The effect size (Cohen’s d) found between the aggression females gave towards theirs clonal sister to that given to non-sister clones.

  • View in gallery

    The average ± SD body size of the focal Amazon mollies, the heterospecific females, clonal sister and non-sister clones.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 5 5 5
Full Text Views 8 8 8
PDF Downloads 2 2 2
EPUB Downloads 0 0 0