Contact network models have enabled significant advances in understanding the influence of behaviour on parasite and pathogen transmission. They are an important tool that links variation in individual behaviour, to epidemiological consequences at the population level. Here, in our introduction to this special issue, we highlight the importance of applying network approaches to disease ecological and epidemiological questions, and how this has provided a much deeper understanding of these research areas. Recent advances in tracking host behaviour (bio-logging: e.g., GPS tracking, barcoding) and tracking pathogens (high-resolution sequencing), as well as methodological advances (multi-layer networks, computational techniques) started producing exciting new insights into disease transmission through contact networks. We discuss some of the exciting directions that the field is taking, some of the challenges, and importantly the opportunities that lie ahead. For instance, we suggest to integrate multiple transmission pathways, multiple pathogens, and in some systems, multiple host species, into the next generation of network models. Corresponding opportunities exist in utilising molecular techniques, such as high-resolution sequencing, to establish causality in network connectivity and disease outcomes. Such novel developments and the continued integration of network tools offers a more complete understanding of pathogen transmission processes, their underlying mechanisms and their evolutionary consequences.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Adelman, J.S., Moyers, S.C., Farine, D.R. & Hawley, D.M. (2015). Feeder use predicts both acquisition and transmission of a contagious pathogen in a North American songbird. — Proc. Roy. Soc. Lond. B: Biol. Sci. 282: 20151429.
Aiello, C.M., Esque, T.C., Nussear, K.E., Emblidge, P.G. & Hudson, P.J. (2018). Associating sex-biased and seasonal behaviour with contact patterns and transmission risk in Gopherus agassizii. — Behaviour 155: 585-619.
Aiello, C.M., Nussear, K.E., Walde, A.D., Esque, T.C., Emblidge, P.G., Sah, P., Bansal, S. & Hudson, P.J. (2014). Disease dynamics during wildlife translocations: disruptions to the host population and potential consequences for transmission in desert tortoise contact networks. — Anim. Cons. 17: 27-39.
Alarcón-Nieto, G., Graving, J.M., Klarevas-Irby, J.A., Maldonado-Chaparro, A.A., Mueller, I. & Farine, D.R. (2018). An automated barcode tracking system for behavioural studies in birds. — Methods Ecol. Evol. 9: 1536-1547.
Azimi-Tafreshi, N. (2016). Cooperative epidemics on multiplex networks. — Phys. Rev. E 93: 042303.
Bansal, S., Grenfell, B.T. & Meyers, L.A. (2007). When individual behaviour matters: homogeneous and network models in epidemiology. — J. R. Soc. Interface 4: 879-891.
Bansal, S., Read, J., Pourbohloul, B. & Meyers, L.A. (2010). The dynamic nature of contact networks in infectious disease epidemiology. — J. Biol. Dyn. 4: 478-489.
Blyton, M.D.J., Banks, S.C., Peakall, R., Lindenmayer, D.B. & Gordon, D.M. (2014). Not all types of host contacts are equal when it comes to E. coli transmission. — Ecol. Lett. 17: 970-978.
Böhm, M., Hutchings, M.R. & White, P.C. (2009). Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. — PLoS One 4: e5016.
Brearley, G., Rhodes, J., Bradley, A., Baxter, G., Seabrook, L., Lunney, D., Liu, Y. & McAlpine, C. (2013). Wildlife disease prevalence in human-modified landscapes. — Biol. Rev. 88: 427-442.
Brent, L.N., MacLarnon, A., Platt, M. & Semple, S. (2013). Seasonal changes in the structure of rhesus macaque social networks. — Behav. Ecol. Sociobiol. 67: 349-359.
Bull, C.M., Godfrey, S.S. & Gordon, D.M. (2012). Social networks and the spread of Salmonella in a sleepy lizard population. — Mol. Ecol. 21: 4386-4392.
Chen, S., White, B.J., Sanderson, M.W., Amrine, D.E., Ilany, A. & Lanzas, C. (2014). Highly dynamic animal contact network and implications on disease transmission. — Sci. Rep. 4: 4472.
Corner, L.A.L., Pfeiffer, D.U. & Morris, R.S. (2003). Social-network analysis of Mycobacterium bovis transmission among captive brushtail possums (Trichosurus vulpecula). — Prev. Vet. Med. 59: 147-167.
Craft, M.E., Volz, E., Packer, C. & Meyers, L.A. (2009). Distinguishing epidemic waves from disease spillover in a wildlife population. — Proc. Roy. Soc. Lond. B: Biol. Sci. DOI:10.1098/rspb.2008.1636.
Craft, M.E. (2015). Infectious disease transmission and contact networks in wildlife and livestock. — Philos. Trans. Roy. Soc. B: Biol. Sci. 370: 2014107.
Croft, D.P., James, R., Ward, A.J.W., Botham, M.S., Mawdsley, D. & Krause, J. (2005). Assortative interactions and social networks in fish. — Oecologia 143: 211-219.
Croft, D.P., Madden, J.R., Franks, D.W. & James, R. (2011). Hypothesis testing in animal social networks. — Trends Ecol. Evol. 26: 502-507.
Dougherty, E.R., Seidel, D.P., Carlson, C.J., Spiegel, O., Getz, W.M. & Lafferty, K. (2018). Going through the motions: incorporating movement analyses into disease research. — Ecol. Lett. 21: 588-604.
Ezenwa, V.O., Archie, E.A., Craft, M.E., Hawley, D.M., Martin, L.B., Moore, J. & White, L. (2016). Host behaviour-parasite feedback: an essential link between animal behaviour and disease ecology. — Proc. Roy. Soc. Lond. B: Biol. Sci. 283: 20153078.
Farine, D. (2017a). The dynamics of transmission and the dynamics of networks. — J. Anim. Ecol. 86: 415-418.
Farine, D.R. (2017b). A guide to null models for animal social network analysis. — Methods Ecol. Evol. 8: 1309-1320.
Fefferman, N.H. & Ng, K.L. (2007). How disease models in static networks can fail to approximate disease in dynamic networks. — Phys. Rev. E 76: 031919.
Gilbertson, M.L., Fountain-Jones, N.M. & Craft, M.E. (2018). Incorporating genomic methods into contact networks to reveal new insights into animal behaviour and infectious disease dynamics. — Behaviour 155: 759-791.
Godfrey, S.S., Bradley, J.K., Sih, A. & Bull, C.M. (2012). Lovers and fighters in sleepy lizard land: where do aggressive males fit in a social network? — Anim. Behav. 83: 209-215.
Godfrey, S.S. (2013). Networks and the ecology of parasite transmission: a framework for wildlife parasitology. — Int. J. Parasitol. Parasites Wildl. 2: 235-245.
Gorsich, E.E., Etienne, R.S., Medlock, J., Beechler, B.R., Spaan, J.M., Spaan, R.S., Ezenwa, V.O. & Jolles, A.E. (2018). Opposite outcomes of coinfection at individual and population scales. — Proc. Natl. Acad. Sci. USA 115: 7545-7550.
Guimarães Jr, P.R., de Menezes, M.A., Baird, R.W., Lusseau, D., Guimarães, P. & Dos Reis, S.F. (2007). Vulnerability of a killer whale social network to disease outbreaks. — Phys. Rev. E. 76: 042901.
Hart, B.L. & Hart, L.A. (2018). How mammals stay healthy in nature: the evolution of behaviours to avoid parasites and pathogens. — Phil. Trans. Roy. Soc. B: Biol. Sci. 373: 20170205.
Hassell, J.M., Begon, M., Ward, M.J. & Fèvre, E.M. (2017). Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. — Trends Ecol. Evol. 32: 55-67.
Holme, P. & Liljeros, F. (2014). Birth and death of links control disease spreading in empirical contact networks. — Sci. Rep. 4: 4999.
Jacoby, D.M. & Freeman, R. (2016). Emerging network-based tools in movement ecology. — Trends Ecol. Evol. 31: 301-314.
Jones, K.L., Thompson, R.C.A. & Godfrey, S.S. (2018). Social networks: a tool for assessing the impact of perturbations on wildlife behaviour and implications for pathogen transmission. — Behaviour 155: 689-730.
Kashima, K., Ohtsuki, H. & Satake, A. (2013). Fission-fusion bat behavior as a strategy for balancing the conflicting needs of maximizing information accuracy and minimizing infection risk. — J. Theor. Biol. 318: 101-109.
Kays, R., Crofoot, M.C., Jetz, W. & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. — Science 348: aaa2478.
Keiser, C.N., Pinter-Wollman, N., Augustine, D.A., Ziemba, M.J., Hao, L., Lawrence, J.G. & Pruitt, J.N. (2016). Individual differences in boldness influence patterns of social interactions and the transmission of cuticular bacteria among group-mates. — Proc. Roy. Soc. Lond. B: Biol. Sci. 283: 20160457.
Kiesecker, J.M., Skelly, D.K., Beard, K.H. & Preisser, E. (1999). Behavioral reduction of infection risk. — Proc. Natl. Acad. Sci. USA 96: 9165-9168.
Krause, J., Krause, S., Arlinghaus, R., Psorakis, I., Roberts, S. & Rutz, C. (2013). Reality mining of animal social systems. — Trends Ecol. Evol. 28: 541-551.
Leu, S.T., Kappeler, P.M. & Bull, C.M. (2010). Refuge sharing network predicts ectoparasite load in a lizard. — Behav. Ecol. Sociobiol. 64: 1495-1503.
Leu, S.T., Farine, D.R., Wey, T.W., Sih, A. & Bull, C.M. (2016). Environment modulates population social structure: experimental evidence from replicated social networks of wild lizards. — Anim. Behav. 111: 23-31.
Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E. & Getz, W.M. (2005). Superspreading and the effect of individual variation on disease emergence. — Nature 438: 355-359.
Lopes, P.C., Block, P. & König, B. (2016). Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. — Sci. Rep. 6: 31790.
Marcogliese, D.J. & Pietrock, M. (2011). Combined effects of parasites and contaminants on animal health: parasites do matter. — Trends Parasitol. 27: 123-130.
Nunn, C.L., Jordán, F., McCabe, C.M., Verdolin, J.L. & Fewell, J.H. (2015). Infectious disease and group size: more than just a numbers game. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 370: 20140111.
Oh, K.P. & Badyaev, A.V. (2010). Structure of social networks in a passerine bird: consequences for sexual selection and the evolution of mating strategies. — Am. Nat. 176: E80-E89.
Otterstatter, M.C. & Thomson, J.D. (2007). Contact networks and transmission of an intestinal pathogen in bumble bee (Bombus impatiens) colonies. — Oecologia. 154: 411-421.
Pilosof, S., Porter, M.A., Pascual, M. & Kefi, S. (2017). The multilayer nature of ecological networks. — Nat. Ecol. Evol. 1: 0101.
Poulin, R. (1994). Meta-analysis of parasite-induced behavioural changes. — Anim. Behav. 48: 137-146.
Poulin, R. (2013). Parasite manipulation of host personality and behavioural syndromes. — J. Exp. Biol. 216: 18-26.
Poulin, R. (2018). Modification of host social networks by manipulative parasites. — Behaviour 155: 671-688.
Reynolds, J.J., Hirsch, B.T., Gehrt, S.D. & Craft, M.E. (2015). Raccoon contact networks predict seasonal susceptibility to rabies outbreaks and limitations of vaccination. — J. Anim. Ecol. 84: 1720-1731.
Richard, F.J., Aubert, A. & Grozinger, C.M. (2008). Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. — BMC Biol. 6: 50.
Rimbach, R., Bisanzio, D., Galvis, N., Link, A., Di Fiore, A. & Gillespie, T.R. (2015). Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics. — Philos. Trans. R. Soc. Lond. B: Biol. Sci. 370: 20140110.
Rouco, C., Jewell, C., Richardson, K.S., French, N.P., Buddle, B.M. & Tompkins, D.M. (2018). Brushtail possum (Trichosurus vulpecula) social interactions and their implications for bovine tuberculosis epidemiology. — Behaviour 155: 621-637.
Ruch, J., Dumke, M. & Schneider, J.M. (2015). Social network structure in group-feeding spiders. — Behav. Ecol. Sociobiol 69: 1429-1436.
Rynkiewicz, E.C., Pedersen, A.B. & Fenton, A. (2015). An ecosystem approach to understanding and managing within-host parasite community dynamics. — Trends Parasitol. 31: 212-221.
Sah, P., Leu, S.T., Cross, P.C., Hudson, P.J. & Bansal, S. (2017). Unraveling the disease consequences and mechanisms of modular structure in animal social networks. — Proc. Natl. Acad. Sci. USA 114: 4165-4170.
Shizuka, D., Chaine, A.S., Anderson, J., Johnson, O., Laursen, I.M. & Lyon, B.E. (2014). Across-year social stability shapes network structure in wintering migrant sparrows. — Ecol. Lett. 17: 998-1007.
Sih, A., Spiegel, O., Godfrey, S., Leu, S. & Bull, C.M. (2018). Integrating social networks, animal personalities, movement ecology and parasites: a framework with examples from a lizard. — Anim. Behav. 136: 195-205.
Silk, M.J., Drewe, J.A., Delahay, R.J., Weber, N., Steward, L.C., Wilson-Aggarwal, J., Boots, M., Hodgson, D.J., Croft, D.P. & McDonald, R.A. (2018). Quantifying direct and indirect contacts for the potential transmission of infection between species using a multilayer contact network. — Behaviour 155: 731-757.
Silk, M.J., Croft, D.P., Delahay, R.J., Hodgson, D.J., Boots, M., Weber, N. & McDonald, R.A. (2017). Using social network measures in wildlife disease ecology, epidemiology, and management. — Bioscience 67: 245-257.
Snijders, L., van Rooij, E.P., Burt, J.M., Hinde, C.A., van Oers, K. & Naguib, M. (2014). Social networking in territorial great tits: slow explorers have the least central social network positions. — Anim. Behav. 98: 95-102.
Spiegel, O., Leu, S.T., Sih, A. & Bull, C.M. (2016). Socially-interacting or indifferent neighbors? Randomization of movement paths to tease apart social preference and spatial constraints. — Methods Ecol. Evol. 7: 971-979.
Spiegel, O., Leu, S.T., Bull, C.M. & Sih, A. (2017a). What’s your move? Movement as a link between personality and spatial dynamics in animal populations. — Ecol. Lett. 20: 3-18.
Springer, A., Kappeler, P.M. & Nunn, C.L. (2017). Dynamic vs. static social networks in models of parasite transmission: predicting Cryptosporidium spread in wild lemurs. — J. Anim. Ecol. 86: 419-433.
Springer, A., Mellmann, A., Fichtel, C. & Kappeler, P.M. (2016). Social structure and Escherichia coli sharing in a group-living wild primate, Verreaux’s sifaka. — BMC Ecol. 16: 1-12.
Stella, M., Andreazzi, C.S., Selakovic, S., Goudarzi, A. & Antonioni, A. (2017). Parasite spreading in spatial ecological multiplex networks. — J. Complex Netw. 5: 486-511.
Sumner, K.M., McCabe, C.M. & Nunn, C.L. (2018). Network size, structure, and pathogen transmission: a simulation study comparing different community detection algorithms. — Behaviour 155: 639-670.
VanderWaal, K.L., Atwill, E.R., Isbell, L.A. & McCowan, B. (2014). Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). — J. Anim. Ecol. 83: 406-414.
VanderWaal, K., Enns, E.A., Picasso, C., Packer, C. & Craft, M.E. (2016a). Evaluating empirical contact networks as potential transmission pathways for infectious diseases. — J. R. Soc. Interface 13: 20160166.
VanderWaal, K.L., Obanda, V., Omondi, G.P., McCowan, B., Wang, H., Fushing, H. & Isbell, L.A. (2016b). The “strength of weak ties” and helminth parasitism in giraffe social networks. — Behav. Ecol. 27: 1190-1197.
Webster, J.P. (1994). The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. — Parasitology 109: 583-589.
Wey, T., Blumstein, D.T., Shen, W. & Jordán, F. (2008). Social network analysis of animal behaviour: a promising tool for the study of sociality. — Anim. Behav. 75: 333-344.
Wey, T.W., Burger, J.R., Ebensperger, L.A. & Hayes, L.D. (2013). Reproductive correlates of social network variation in plurally breeding degus (Octodon degus). — Anim. Behav. 85: 1407-1414.
White, L.A., Forester, J.D. & Craft, M.E. (2017). Using contact networks to explore mechanisms of parasite transmission in wildlife. — Biol. Rev. 92: 389-409.
Wymant, C., Hall, M., Ratmann, O., Bonsall, D., Golubchik, T., de Cesare, M., Gall, A., Cornelissen, M., Fraser, C., STOP-HCV Consortium, The Maela Pneumococcal Collaboration & The BEEHIVE Collaboration (2018). PHYLOSCANNER: inferring transmission from within- and between-host pathogen genetic diversity. — Mol. Biol. Evol. 35: 719-733.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 503 | 75 | 4 |
Full Text Views | 198 | 5 | 0 |
PDF Views & Downloads | 87 | 15 | 0 |
Contact network models have enabled significant advances in understanding the influence of behaviour on parasite and pathogen transmission. They are an important tool that links variation in individual behaviour, to epidemiological consequences at the population level. Here, in our introduction to this special issue, we highlight the importance of applying network approaches to disease ecological and epidemiological questions, and how this has provided a much deeper understanding of these research areas. Recent advances in tracking host behaviour (bio-logging: e.g., GPS tracking, barcoding) and tracking pathogens (high-resolution sequencing), as well as methodological advances (multi-layer networks, computational techniques) started producing exciting new insights into disease transmission through contact networks. We discuss some of the exciting directions that the field is taking, some of the challenges, and importantly the opportunities that lie ahead. For instance, we suggest to integrate multiple transmission pathways, multiple pathogens, and in some systems, multiple host species, into the next generation of network models. Corresponding opportunities exist in utilising molecular techniques, such as high-resolution sequencing, to establish causality in network connectivity and disease outcomes. Such novel developments and the continued integration of network tools offers a more complete understanding of pathogen transmission processes, their underlying mechanisms and their evolutionary consequences.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 503 | 75 | 4 |
Full Text Views | 198 | 5 | 0 |
PDF Views & Downloads | 87 | 15 | 0 |