Orb web construction was originally thought to be highly stereotyped, but adaptive flexibility is now well established in several aspects. This study reviews published data on one behavioural cue and presents new data on flexibility in experimentally modified and control webs of Zosis geniculata and Uloborus diversus. By occasionally ignoring this cue temporarily, spiders gained access to otherwise inaccessible portions of their webs. I discuss three hypotheses concerning the mechanism that resulted in this flexibility. Several types of evidence argue against the hypothesis that the adjustments were pre-programmed: substantial variation in the contexts when adjustments occurred; substantial variation in details of the adjustments; and rarity of the contexts that require adjustments in nature. Lack of plausible links between behavioural decisions and payoffs from prey capture argue against a second, learning hypothesis. By elimination, this flexibility may require a third type of explanation that includes more elaborate cognitive processes.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ades, C. (1982). A construção da teia geométrica como programa comportamental. — Cien. Cult. 38: 760-775.
Barrantes, G. & Eberhard, W.G. (2012). Extreme behavioral flexibility in an orb weaving spider. — Ethology 118: 1-12.
Benjamin, S. & Zschokke, S. (2003). Webs of theridiid spiders: construction, structure and evolution. — Biol. J. Linn. Soc. 78: 293-305.
Benjamin, S. & Zschokke, S. (2004). Homology, behaviour and spider webs: web construction behaviour of Linyphia hortensis and L. triangularis (Araneae: Linyphiidae) and its evolutionary significance. — J. Evol. Biol. 17: 120-130.
Blackledge, T.A. & Zevenbergen, J. (2006). Mesh width influences prey retention in spider orb webs. — Ethology 112: 1194-1201.
Blackledge, T.A., Kuntner, M. & Agnarsson, I. (2011). The form and function of spider orb webs: evolution from silk to ecosystems. — Adv. Insect Physiol. 41: 175-262.
Carico, J. (1977). A simple dusting device for coating orb webs for field photography. — Bull. Br. Arachnol. Soc. 4: 100.
Dimitrov, D., Benavides, L.R., Arnedo, M.A., Giribet, G., Griswold, C.E., Scharff, N. & Hormiga, G. (2017). Rounding up the usual suspects: a standard target-gene approach for resolving the interfamilial phylogenetic relationships of ecribellate orb-weaving spiders with a new family-rank classification (Araneae, Araneoidea). — Cladistics 33: 1-30. DOI:10.1111/cla.12165.
Eberhard, W.G. (1969). Computer simulation of orb-web construction. — Am. Zool. 9: 229-238.
Eberhard, W.G. (1972). The spider Uloborus diversus (Araneae: Uloboridae) and its web. — J. Zool. Lond. 166: 417-465.
Eberhard, W.G. (1982). Behavioral characters for the higher classification of orb-weaving spiders. — Evolution 36: 1067-1095.
Eberhard, W.G. (1976). Photography of orb webs in the field. — Bull. Br. Arachnol. Soc. 3: 200-204.
Eberhard, W.G. (1988). Behavioral flexibility in orb web construction: effects of supplies in different silk glands and spider size and weight. — J. Arachnol. 16: 295-302.
Eberhard, W.G. (2007). Miniaturized orb-weaving spiders: behavioural precision is not limited by small size. — Proc. R. Soc. Lond. B Biol. 274: 2203-2209.
Eberhard, W.G. (2017). How orb-weavers find and grasp silk lines. — J. Arachnol. 45: 145-151.
Eberhard, W.G. (in press). Spider webs: function, behavior and evolution. — University of Chicago Press, Chicago, IL.
Eberhard, W.G. & Barrantes, G. (2015). Cues guiding construction behavior support orb web monophyly. — J. Arachnol. 43: 371-386.
Eberhard, W.G. & Hesselberg, T. (2012). Cues that spiders (Araneae: Araneidae, Tetragnathidae) use to build orbs: lapses in attention to one set of cues because of dissonance with others? — Ethology 118: 610-620.
Eberhard, W.G., Agnarsson, I. & Levi, H.W. (2008). Web forms and the phylogeny of theridiid spiders (Araneae: Theridiidae): chaos from order. — Syst. Biodivers. 6: 415-475.
Fabre, H. (1915). The life of the spider (trans. A. Teixeira de Mattos). — Blue Ribbon Books, New York.
Garrison, N.L., Rodriguez, J., Agnarsson, I., Coddington, J.A., Griswold, C.E., Hamilton, C.A. & Hedin, M. (2016). Spider phylogenomics: untangling the spider tree of life. — PeerJ 4: e1719.
Gotts, N.M. & Vollrath, F. (1991). Artificial intelligence modeling of web-building in the garden cross spider. — J. Theor. Biol. 152: 485-511.
Gotts, N.M. & Vollrath, F. (1992). Physical and theoretical features for the simulation of animal behavior, e.g., the spider’s web. — Cybern. Syst. 23: 41-65.
Griffin, D. (1976). The question of animal awareness. — Rockefeller University Press, New York, NY.
Griffin, D. (1984). Animal thinking. — Harvard University Press, Cambridge, MA.
Griffin, D. & Speck, G.B. (2004). New evidence of animal consciousness. — Anim. Cogn. 7: 5-18.
Heiling, A. & Herberstein, M.E. (1999). The role of experience in web-building spiders (Araneidae). — Anim. Cogn. 2: 171-177.
Herberstein, M.E. & Tso, I.-M. (2011). Spider webs: evolution, diversity and plasticity. — In: Spider behaviour, flexibility and versatility (Herberstein, M.E., ed.). Cambridge University Press, Cambridge, p. 57-98.
Hesselberg, T. (2010). Ontogenetic changes in web design in two orb-web spiders. — Ethology 116: 535-545.
Hesselberg, T. (2014). The mechanism behind plasticity of web-building behavior in an orb spider facing spatial constraints. — J. Arachnol. 42: 311-314.
Hesselberg, T. (2015). Exploration behaviour and behavioral flexibility in orb-web spiders: a review. — Curr. Zool. 61: 313-327.
Hill, D.E. (1979). Orientation by jumping spiders of the genus Phidippus (Araneae: Salticidae) during pursuit of prey. — Behav. Ecol. Sociobiol. 5: 301-322.
Hingston, R.W.G. (1920). A naturalist in Himalaya. — H.F. and G. Witherby, London.
Hingston, R.W.G. (1929). Instinct and intelligence. — MacMillan, New York, NY.
Jackson, R.R. & Cross, F.R. (2011). Spider cognition. — Adv. Insect Physiol. 41: 115-174.
Jackson, R.R. & Wilcox, R.S. (1993). Spider flexibly chooses aggressive mimicry signals for different prey by trial and error. — Behaviour 127: 21-36.
Jackson, R.R., Pollard, S.D. & Verveira, A.M. (2002). Opportunistic use of cognitive smokescreens by araneophagic spiders. — Anim. Cogn. 5: 147-157.
Jakob, E., Skow, C. & Long, S. (2011). Plasticity, learning and cognition. — In: Spider behaviour, flexibility and versatility (Herberstein, M.E., ed.). Cambridge University Press, Cambridge, p. 307-347.
Japyassu, H. & Laland, K.N. (2017). Extended spider cognition. — Anim. Cogn. 20: 375-395.
Krink, T. & Vollrath, F. (1997). Analysing spider web-building behaviour with rule-based simulations and genetic algorithms. — J. Theor. Biol. 185: 321-331.
Kuntner, M., Coddington, J.A. & Hormiga, G. (2008). Phylogeny of extant nephilid orb- weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. — Cladistics 24: 147-217.
LeGuelte, L. (1969). Learning in spiders. — Am. Zool. 9: 145-152.
Lubin, Y.D., Opell, B.D., Eberhard, W.G. & Levi, H.W. (1982). Orb plus cone-webs in Uloboridae (Araneae), with a description of a new genus and four new species. — Psyche 89: 29-64.
Opell, B.D. (2013). Cribellar thread. — In: Spider ecophysiology (Nentwig, W., ed.). Springer, Berlin, p. 303-318.
Peters, H.M. (1931). Die Fanghandlung der Kreuzspinne (Epeira diademata L.). — Z. Vergleich. Physiol. 15: 693-748.
Peters, H.M. (1969). Maturing and coordination of web-building activity. — Am. Zool. 9: 223-228.
Peters, P.J. (1970). Orb web construction: interaction of spider (Araneus diadematus Cl.) and thread configuration. — Anim. Behav. 18: 478-484.
Petrusewiczowa, E. (1938). Beobachtungen uber den Bau des Netzes dere Kreuzspinne. — Travaux de l’Institut de Biologie de l’Universitae de Wilno 9: 1-25.
Quesada, R., Triana, E., Vargas, G., Seid, M., Niven, J., Douglass, J., Eberhard, W.G. & Wcislo, W.T. (2011). Disproportionately large brains extend into the legs of miniaturized spiders. — Arthropod. Struct. Dev. 40: 521-529.
Reed, C., Witt, P.N., Scarboro, M.B. & Peakall, D.B. (1970). Experience and the orb web. — Dev. Psychobiol. 3: 251-265.
Rodriguez, R.L. & Gamboa-Segura, E. (2000). Memory of captured prey in three web spiders (Araneae: Araneidae, Linyphiidae, Tetragnathidae). — Anim. Cogn. 3: 91-97.
Rodriguez, R.L., Briceño, R.D., Briceño-Aguilar, E. & Höbel, G. (2015). Nephila clavipes spiders (Araneae: Nephilidae) keep track of captured prey counts: testing for a sense of numerosity in an orb-weaver. — Anim. Cogn. 18: 307-314. DOI:10.1007/s10071-014-0801-9.
Sébrier, M.A. & Krafft, B. (1993). Influence of prior experience on prey consumption behaviour in the spider Zygiella x-notata. — Ethol. Ecol. Evol. 5: 541-547.
Shettleworth, S.J. (2010). Cognition, evolution, and behavior. — Oxford University Press, New York, NY.
Tarsitano, M.S. & Jackson, R.R. (1994). Jumping spiders make predatory detours requiring movement away from prey. — Behaviour 131: 65-73.
Tarsitano, M.S. & Jackson, R.R. (1997). Araneophagic jumping spiders discriminate between detour routes that do and do not lead to prey. — Anim. Behav. 53: 257-266.
Vollrath, F. (1992). Analysis and interpretation of orb spider exploration and web-building behavior. — Adv. Stud. Behav. 21: 147-199.
Wilcox, R.S., Jackson, R.R. & Gentile, K. (1996). Spider web smokescreens: spider trickster uses background noise to mask stalking movements. — Anim. Behav. 51: 313-326.
Witt, P.N., Reed, C. & Peakall, D.B. (1968). A spider’s web. — Springer, New York, NY.
Zschokke, S. (1997). Factors influencing the size of the orb web. — In: Proc. 16th eur. coll. arachnol. Siedlce, p. 329-334.
Zschokke, S. & Vollrath, F. (1995). Unfreezing the behaviour of two orb web spiders. — Physiol. Behav. 58: 1167-1173.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1397 | 189 | 23 |
Full Text Views | 168 | 41 | 7 |
PDF Views & Downloads | 194 | 58 | 11 |
Orb web construction was originally thought to be highly stereotyped, but adaptive flexibility is now well established in several aspects. This study reviews published data on one behavioural cue and presents new data on flexibility in experimentally modified and control webs of Zosis geniculata and Uloborus diversus. By occasionally ignoring this cue temporarily, spiders gained access to otherwise inaccessible portions of their webs. I discuss three hypotheses concerning the mechanism that resulted in this flexibility. Several types of evidence argue against the hypothesis that the adjustments were pre-programmed: substantial variation in the contexts when adjustments occurred; substantial variation in details of the adjustments; and rarity of the contexts that require adjustments in nature. Lack of plausible links between behavioural decisions and payoffs from prey capture argue against a second, learning hypothesis. By elimination, this flexibility may require a third type of explanation that includes more elaborate cognitive processes.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1397 | 189 | 23 |
Full Text Views | 168 | 41 | 7 |
PDF Views & Downloads | 194 | 58 | 11 |