We studied how food type and available landmarks affect spatial learning in the ant Cataglyphis niger while searching for food in a maze. We expected the ants to solve the maze faster with consecutive runs, when the preferred food type is offered, and in the presence of landmarks. Ants should also solve the maze more slowly following a mirror-route switch in the maze. As expected, maze-solving improved when searching for a preferred food type than a less preferred one, as determined in a separate food preference experiment. In contrast, adding landmarks to the maze had only little effect on maze-solving and the number of searching workers. Switching the route to a mirror-imaged route in the maze delayed maze-solving and required more workers to search for food. Our findings extend the knowledge on the ants’ learning abilities and demonstrate how foragers detect food faster when offered a high-ranking food item.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Amor, F., Ortega, P. & Boulay, R. (2010). Cooperative prey-retrieving in the ant Cataglyphis floricola: an unusual short-distance recruitment. — Insect. Soc. 57: 91-94.
Andel, D. & Wehner, R. (2004). Path integration in desert ants, Cataglyphis: how to make a homing ant run away from home. — Proc. Roy. Soc. Lond. B: Biol. Sci. 271: 1485-1489.
Bega, D., Samocha, Y., Yitzhak, N., Saar, M., Subach, A. & Scharf, I. (2019). The effect of maze complexity on maze-solving time in a desert ant. — Behav. Proc. 166: 103893.
Bega, D., Samocha, Y., Yitzhak, N., Saar, M., Subach, A. & Scharf, I. (2020). Non-spatial information on the presence of food elevates search intensity in ant workers, leading to faster maze solving in a process parallel to spatial learning. — PLoS One 15: e0229709.
Behmer, S.T., Belt, C.E. & Shapiro, M.S. (2005). Variable rewards and discrimination ability in an insect herbivore: what and how does a hungry locust learn? — J. Exp. Biol. 208: 3463-3473.
Benus, R.F., Koolhaas, J.M. & Van Oortmerssen, G.A. (1987). Individual differences in behavioural reaction to a changing environment in mice and rats. — Behaviour 100: 105-121.
Bird, L.R., Roberts, W.A., Abroms, B., Kit, K.A. & Crupi, C. (2003). Spatial memory for food hidden by rats (Rattus norvegicus) on the radial maze: studies of memory for where, what, and when. — J. Comp. Psychol. 117: 176-187.
Blüthgen, N. & Fiedler, K. (2004). Preferences for sugars and amino acids and their conditionality in a diverse nectar-feeding ant community. — J. Anim. Ecol. 73: 155-166.
Boal, J.G., Dunham, A.W., Williams, K.T. & Hanlon, R.T. (2000). Experimental evidence for spatial learning in octopuses (Octopus bimaculoides). — J. Comp. Psychol. 114: 246-252.
Bollazzi, M. & Roces, F. (2011). Information needs at the beginning of foraging: grass-cutting ants trade off load size for a faster return to the nest. — PLoS ONE 6: e17667.
Boulay, R., Aron, S., Cerdá, X., Doums, C., Graham, P., Hefetz, A. & Monnin, T. (2017). Social life in arid environments: the case study of Cataglyphis ants. — Annu. Rev. Entomol. 62: 305-321.
Buehlmann, C., Hansson, B.S. & Knaden, M. (2012). Desert ants learn vibration and magnetic landmarks. — PLoS ONE 7: e33117.
Burns, J.G., Foucaud, J. & Mery, F. (2011). Costs of memory: lessons from ‘mini’ brains. — Proc. Roy. Soc. Lond. B: Biol. Sci. 278: 923-929.
Capaldi, E.A., Robinson, G.E. & Fahrbach, S.E. (1999). Neuroethology of spatial learning: the birds and the bees. — Annu. Rev. Psychol. 50: 651-682.
Cerdá, X. (1988). Food collection by Cataglyphis iberica (Em.) (Hymenoptera, Formicidae). — Ann. Zool. 41: 515-525.
Cerdá, X., Retana, J., Bosch, J. & Alsina, A. (1989). Daily foraging activity and food collection of the thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). — Vie Milieu 39: 207-212.
Cerdá, X., Retana, J., Carpintero, S. & Cros, S. (1992). Petals as the main resource collected by the ant, Cataglyphis floricola (Hymenoptera: Formicidae). — Sociobiology 20: 315-320.
Cerdá, X., Retana, J., Carpintero, S. & Cros, S. (1996). An unusual ant diet: Cataglyphis floricola feeding on petals. — Insect. Soc. 43: 101-104.
Chameron, S., Schatz, B., Pastergue-Ruiz, I., Beugnon, G. & Collett, T.S. (1998). The learning of a sequence of visual patterns by the ant Cataglyphis cursor. — Proc. Roy. Soc. Lond. B: Biol. Sci. 265: 2309-2313.
Collett, M., Collett, T.S., Chameron, S. & Wehner, R. (2003a). Do familiar landmarks reset the global path integration system of desert ants? — J. Exp. Biol. 206: 877-882.
Collett, T.S., Graham, P. & Durier, V. (2003b). Route learning by insects. — Curr. Opin. Neurobiol. 13: 718-725.
Cook, Z., Franks, D.W. & Robinson, E.J. (2013). Exploration versus exploitation in polydomous ant colonies. — J. Theor. Biol. 323: 49-56.
Costa, T.M., Hebets, E.A., Melo, D. & Willemart, R.H. (2016). Costly learning: preference for familiar food persists despite negative impact on survival. — Biol. Lett. 12: 20160256.
Couvillon, P.A., Nagrampa, J.A. & Bitterman, M.E. (1994). Learning in honeybees (Apis mellifera) as a function of sucrose concentration: analysis of the retrospective effect. — J. Comp. Psychol. 108: 274-281.
Csata, E. & Dussutour, A. (2019). Nutrient regulation in ants (Hymenoptera: Formicidae): a review. — Myrmecol. News 29: 111-124.
Czaczkes, T.J., Grüter, C., Ellis, L., Wood, E. & Ratnieks, F.L. (2013). Ant foraging on complex trails: route learning and the role of trail pheromones in Lasius niger. — J. Exp. Biol. 216: 188-197.
Czaczkes, T.J., Grüter, C., Jones, S.M. & Ratnieks, F.L. (2011). Synergy between social and private information increases foraging efficiency in ants. — Biol. Lett. 7: 521-524.
Denton, K.K. & Nonacs, P. (2018). Habitat complexity and predictability effects on finding and collecting food when ants search as cooperative groups. — Anim. Behav. 141: 77-84.
Dewar, A.D., Philippides, A. & Graham, P. (2014). What is the relationship between visual environment and the form of ant learning-walks? An in silico investigation of insect navigation. — Adapt. Behav. 22: 163-179.
Du Toit, L., Bennett, N.C., Nickless, A. & Whiting, M.J. (2012). Influence of spatial environment on maze learning in an African mole-rat. — Anim. Cogn. 15: 797-806.
Dukas, R. (2008). Evolutionary biology of insect learning. — Annu. Rev. Entomol. 53: 145-160.
Dukas, R. & Real, L.A. (1993). Effects of nectar variance on learning by bumble bees. — Anim. Behav. 45: 37-41.
Dussutour, A. & Simpson, S.J. (2012). Ant workers die young and colonies collapse when fed a high-protein diet. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 2402-2408.
Egas, M. & Sabelis, M.W. (2001). Adaptive learning of host preference in a herbivorous arthropod. — Ecol. Lett. 4: 190-195.
Eyer, P.A., Seltzer, R., Reiner-Brodetzki, T. & Hefetz, A. (2017). An integrative approach to untangling species delimitation in the Cataglyphis bicolor desert ant complex in Israel. — Mol. Phylogenet. Evol. 115: 128-139.
Falibene, A., Roces, F. & Rössler, W. (2015). Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants. — Front. Behav. Neurosci. 9: 84.
Ferrari, M.C., Brown, G.E., Bortolotti, G.R. & Chivers, D.P. (2010). Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles. — Proc. Roy. Soc. Lond. B: Biol. Sci. 277: 2205-2210.
Fleischmann, P.N., Christian, M., Müller, V.L., Rössler, W. & Wehner, R. (2016). Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis. — J. Exp. Biol. 219: 3137-3145.
Fleischmann, P.N., Rössler, W. & Wehner, R. (2018). Early foraging life: spatial and temporal aspects of landmark learning in the ant Cataglyphis noda. — J. Comp. Physiol. A 204: 579-592.
Gadd, C.A. & Raubenheimer, D. (2000). Nutrient-specific learning in an omnivorous insect: the American cockroach Periplaneta americana L. learns to associate dietary protein with the odors citral and carvone. — J. Insect Behav. 13: 851-864.
Gil, M., De Marco, R.J. & Menzel, R. (2007). Learning reward expectations in honeybees. — Learn. Mem. 14: 491-496.
Giurfa, M. (2003). The amazing mini-brain: lessons from a honey bee. — Bee World 84: 5-18.
Giurfa, M., Nunez, J., Chittka, L. & Menzel, R. (1995). Colour preferences of flower-naive honeybees. — J. Comp. Physiol. A 177: 247-259.
Graham, P. & Cheng, K. (2009). Which portion of the natural panorama is used for view based navigation in the Australian desert ant? — J. Comp. Physiol. A 195: 681-689.
Grüter, C., Maitre, D., Blakey, A., Cole, R. & Ratnieks, F.L. (2015). Collective decision making in a heterogeneous environment: Lasius niger colonies preferentially forage at easy to learn locations. — Anim. Behav. 104: 189-195.
Guerrieri, F.J., d’Ettorre, P., Devaud, J.M. & Giurfa, M. (2011). Long-term olfactory memories are stabilised via protein synthesis in Camponotus fellah ants. — J. Exp. Biol. 214: 3300-3304.
Herbert Jr, E.W., Shimanuki, H. & Caron, D. (1977). Optimum protein levels required by honey bees (Hymenoptera, Apidae) to initiate and maintain brood rearing. — Apidologie 8: 141-146.
Heyman, Y., Shental, N., Brandis, A., Hefetz, A. & Feinerman, O. (2017). Ants regulate colony spatial organization using multiple chemical road-signs. — Nat. Commun. 8: 15414.
Jaffe, K., Ramos, C., Lagalla, C. & Parra, L. (1990). Orientation cues used by ants. — Insect. Soc. 37: 101-115.
Johnson, R.A. (1991). Learning, memory, and foraging efficiency in two species of desert seed harvester ants. — Ecology 72: 1408-1419.
Katz, K. & Naug, D. (2015). Energetic state regulates the exploration–exploitation trade-off in honeybees. — Behav. Ecol. 26: 1045-1050.
Kramer, D.L. & Weary, D.M. (1991). Exploration versus exploitation: a field study of time allocation to environmental tracking by foraging chipmunks. — Anim. Behav. 41: 443-449.
Krebs, J.R. & Inman, A.J. (1992). Learning and foraging: individuals, groups, and populations. — Am. Nat. 140: S63-S84.
Kuszewska, K., Miler, K., Filipiak, M. & Woyciechowski, M. (2016). Sedentary antlion larvae (Neuroptera: Myrmeleontidae) use vibrational cues to modify their foraging strategies. — Anim. Cogn. 19: 1037-1041.
Latty, T. & Beekman, M. (2009). Food quality affects search strategy in the acellular slime mould, Physarum polycephalum. — Behav. Ecol. 20: 1160-1167.
Lenoir, A., Aron, S., Cerdá, X. & Hefetz, A. (2009). Cataglyphis desert ants: a good model for evolutionary biology in Darwin’s anniversary year — a review. — Isr. J. Entomol. 39: 1-32.
Lozada, M. & D’Adamo, P. (2006). How long do Vespula germanica wasps search for a food source that is no longer available? — J. Insect Behav. 19: 591-600.
Macquart, D., Latil, G. & Beugnon, G. (2008). Sensorimotor sequence learning in the ant Gigantiops destructor. — Anim. Behav. 75: 1693-1701.
Markin, G.P. (1970). Food distribution within laboratory colonies of the Argentine ant, Iridomyrmex humilis (Mayr). — Insect. Soc. 2: 127-158.
McNamara, J.M. & Houston, A.I. (1987). Memory and the efficient use of information. — J. Theor. Biol. 125: 385-395.
Mellgren, R.L. & Roper, T.J. (1986). Spatial learning and discrimination of food patches in the European badger (Meles meles L.). — Anim. Behav. 34: 1129-1134.
Menzel, R. (1967). Untersuchungen zum Erlernen von Spektralfarben durch die Honigbiene (Apis mellifica). — Z. Vergl. Physiol. 56: 22-62.
Menzel, R. (2001). Searching for the memory trace in a mini-brain, the honeybee. — Learn. Mem. 8: 53-62.
Menzel, R. & Erber, J. (1972). The influence of the quantity of reward on the learning performance in honeybees. — Behaviour 41: 27-42.
Mirwan, H.B. & Kevan, P.G. (2015). Maze navigation and route memorization by worker bumblebees (Bombus impatiens (Cresson) (Hymenoptera: Apidae). — J. Insect Behav. 28: 345-357.
Moreyra, S., D’Adamo, P. & Lozada, M. (2012). Cognitive processes in Vespula germanica wasps (Hymenoptera: Vespidae) when relocating a food source. — Ann. Entomol. Soc. Am. 105: 128-133.
Nakamuta, K. (1985). Mechanism of the switchover from extensive to area-concentrated search behaviour of the ladybird beetle, Coccinella septempunctata bruckii. — J. Insect Physiol. 31: 849-856.
Narendra, A. & Ramirez-Esquivel, F. (2017). Subtle changes in the landmark panorama disrupt visual navigation in a nocturnal bull ant. — Phil. T. R. Soc. B 372: 20160068.
Nicholson, D.J., Judd, S.P., Cartwright, B.A. & Collett, T.S. (1999). Learning walks and landmark guidance in wood ants (Formica rufa). — J. Exp. Biol. 202: 1831-1838.
Noda, M., Gushima, K. & Kakuda, S. (1994). Local prey search based on spatial memory and expectation in the planktivorous reef fish, Chromis chrysurus (Pomacentridae). — Anim. Behav. 47: 1413-1422.
Odling-Smee, L. & Braithwaite, V.A. (2003). The influence of habitat stability on landmark use during spatial learning in the three-spined stickleback. — Anim. Behav. 65: 701-707.
Olton, D.S. (1979). Mazes, maps, and memory. — Am. Psychol. 34: 583-596.
Papaj, D.R. & Prokopy, R.J. (1989). Ecological and evolutionary aspects of learning in phytophagous insects. — Annu. Rev. Entomol. 34: 315-350.
Patrick, S.C., Pinaud, D. & Weimerskirch, H. (2017). Boldness predicts an individual’s position along an exploration–exploitation foraging trade-off. — J. Anim. Ecol. 86: 1257-1268.
Perez, M., Rolland, U., Giurfa, M. & d’Ettorre, P. (2013). Sucrose responsiveness, learning success, and task specialization in ants. — Learn. Mem. 20: 417-420.
Porter, S.D. (1989). Effects of diet on the growth of laboratory fire ant colonies (Hymenoptera: Formicidae). — J. Kansas Entomol. Soc. 62: 288-291.
Raine, N.E., Ings, T.C., Ramos-Rodriguez, O. & Chittka, L. (2006). Intercolony variation in learning performance of a wild British bumblebee population Hymenoptera: Apidae: Bombus terrestris audax. — Entomol. Gen. 28: 241-258.
Raubenheimer, D. & Tucker, D. (1997). Associative learning by locusts: pairing of visual cues with consumption of protein and carbohydrate. — Anim. Behav. 54: 1449-1459.
Razin, N., Eckmann, J.P. & Feinerman, O. (2013). Desert ants achieve reliable recruitment across noisy interactions. — J. R. Soc. Interface 10: 20130079.
Reese, E.S. (1989). Orientation behavior of butterflyfishes (family Chaetodontidae) on coral reefs: spatial learning of route specific landmarks and cognitive maps. — Environ. Biol. Fish. 25: 79-86.
Saar, M., Gilad, T., Kilon-Kallner, T., Rosenfeld, A., Subach, A. & Scharf, I. (2017). The interplay between maze complexity, colony size, learning and memory in ants while solving a maze: a test at the colony level. — PLoS One 12: e0183753.
Saar, M., Subach, A., Reato, I., Liber, T., Pruitt, J.N. & Scharf, I. (2018a). Consistent differences in foraging behavior in 2 sympatric harvester ant species may facilitate coexistence. — Curr. Zool. 64: 653-661.
Saar, M., Eyer, P.A., Kilon-Kallner, T., Hefetz, A. & Scharf, I. (2018b). Within-colony genetic diversity differentially affects foraging, nest maintenance, and aggression in two species of harvester ants. — Sci. Rep. 8: 13868.
Scharf, I., Gilad, T., Bar-Ziv, M.A., Katz, N., Gregorian, E., Pruitt, J.N. & Subach, A. (2018). The contribution of shelter from rain to the success of pit-building predators in urban habitats. — Anim. Behav. 142: 139-145.
Schatz, B., Chameron, S., Beugnon, G. & Collett, T.S. (1999). The use of path integration to guide route learning in ants. — Nature 399: 769-772.
Scheiner, R., Barnert, M. & Erber, J. (2003). Variation in water and sucrose responsiveness during the foraging season affects proboscis extension learning in honey bees. — Apidologie 34: 67-72.
Schultheiss, P. & Cheng, K. (2011). Finding the nest: inbound searching behaviour in the Australian desert ant, Melophorus bagoti. — Anim. Behav. 81: 1031-1038.
Schultheiss, P. & Cheng, K. (2012). Finding food: outbound searching behavior in the Australian desert ant Melophorus bagoti. — Behav. Ecol. 24: 128-135.
Schwarz, S. & Cheng, K. (2010). Visual associative learning in two desert ant species. — Behav. Ecol. Sociobiol. 64: 2033-2041.
Sheenaja, K.K. & Thomas, K.J. (2011). Influence of habitat complexity on route learning among different populations of climbing perch (Anabas testudineus Bloch, 1792). — Mar. Freshw. Behav. Physiol. 44: 349-358.
Shumway, C.A. (2010). The evolution of complex brains and behaviors in African cichlid fishes. — Curr. Zool. 56: 144-156.
Srinivasan, M.V. (2010). Honey bees as a model for vision, perception, and cognition. — Annu. Rev. Entomol. 55: 267-284.
Stratton, L.O. & Coleman, W.P. (1973). Maze learning and orientation in the fire ant (Solenopsis saevissima). — J. Comp. Physiol. Psychol. 83: 7-12.
Sulikowski, D. & Burke, D. (2010). Reward type influences performance and search structure of an omnivorous bird in an open-field maze. — Behav. Proc. 83: 31-35.
Tapia, D.H., Silva, A.X., Ballesteros, G.I., Figueroa, C.C., Niemeyer, H.M. & Ramírez, C.C. (2015). Differences in learning and memory of host plant features between specialist and generalist phytophagous insects. — Anim. Behav. 106: 1-10.
Udino, E., Perez, M., Carere, C. & d’Ettorre, P. (2017). Active explorers show low learning performance in a social insect. — Curr. Zool. 63: 555-560.
VanderSal, N.D. (2008). Rapid spatial learning in a velvet ant (Dasymutilla coccineohirta). — Anim. Cogn. 11: 563-567.
Vladusich, T., Hemmi, J.M., Srinivasan, M.V. & Zeil, J. (2005). Interactions of visual odometry and landmark guidance during food search in honeybees. — J. Exp. Biol. 208: 4123-4135.
Wehner, R., Michel, B. & Antonsen, P. (1996). Visual navigation in insects: coupling of egocentric and geocentric information. — J. Exp. Biol. 199: 129-140.
Wehner, R. (2003). Desert ant navigation: how miniature brains solve complex tasks. — J. Comp. Physiol. A 189: 579-588.
Wehner, R. (2009). The architecture of the desert ant’s navigational toolkit (Hymenoptera: Formicidae). — Myrmecol. News 12: 85-96.
Wei, C., Rafalko, S. & Dyer, F. (2002). Deciding to learn: modulation of learning flights in honeybees, Apis mellifera. — J. Comp. Physiol. A 188: 725-737.
Weiss, M.R. & Papaj, D.R. (2003). Colour learning in two behavioural contexts: how much can a butterfly keep in mind? — Anim. Behav. 65: 425-434.
Wolf, H. (2008). Desert ants adjust their approach to a foraging site according to experience. — Behav. Ecol. Sociobiol. 62: 415-425.
Wright, G.A., Choudhary, A.F. & Bentley, M.A. (2009). Reward quality influences the development of learned olfactory biases in honeybees. — Proc. Roy. Soc. Lond. B: Biol. Sci. 276: 2597-2604.
Xue, H.J., Egas, M. & Yang, X.K. (2007). Development of a positive preference–performance relationship in an oligophagous beetle: adaptive learning? — Entomol. Exp. Appl. 125: 119-124.
Zhang, S., Bartsch, K. & Srinivasan, M.V. (1996). Maze learning by honeybees. — Neurobiol. Learn. Mem. 66: 267-282.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 732 | 154 | 19 |
Full Text Views | 175 | 32 | 4 |
PDF Views & Downloads | 245 | 48 | 1 |
We studied how food type and available landmarks affect spatial learning in the ant Cataglyphis niger while searching for food in a maze. We expected the ants to solve the maze faster with consecutive runs, when the preferred food type is offered, and in the presence of landmarks. Ants should also solve the maze more slowly following a mirror-route switch in the maze. As expected, maze-solving improved when searching for a preferred food type than a less preferred one, as determined in a separate food preference experiment. In contrast, adding landmarks to the maze had only little effect on maze-solving and the number of searching workers. Switching the route to a mirror-imaged route in the maze delayed maze-solving and required more workers to search for food. Our findings extend the knowledge on the ants’ learning abilities and demonstrate how foragers detect food faster when offered a high-ranking food item.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 732 | 154 | 19 |
Full Text Views | 175 | 32 | 4 |
PDF Views & Downloads | 245 | 48 | 1 |