Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
Females often choose mates based on their courtship signals. Males may signal their heritable genetic quality, defended resources, or parental care efforts; however, the reasons why females choose males based on their signals are often not clear. Here, we show that, in the fiddler crab Austruca perplexa, male signals (major-claw waving rates) were correlated with important characteristics of their defended resources (width and depth of breeding burrows). By using the male signals, females may be able to roughly predict the burrow quality and decide whether to enter and check the burrow characteristics. The signals are predicted to be honest because the female’s final decision is based on burrow quality. Since females can reject males if their burrow quality is insufficient for breeding, the courtship efforts of deceptive males will be dismissed. The honesty of the signals is beneficial for both sexes and thus easily evolved in their signalling system.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Achorn, A.M. & Rosenthal, G.G. (2020). It’s not about him: mismeasuring ‘good genes’ in sexual selection. — Trends Ecol. Evol. 35: 206-219. https://doi.org/10.1016/j.tree.2019.11.007.
Akaike, H. (1974). A new look at the statistical model identification. — IEEE Trans. Automat. Contr. 19: 716-723.
Alatalo, R.V., Lundberg, A. & Glynn, C. (1986). Female pied flycatchers choose territory quality and not male characteristics. — Nature 323: 152-153. https://doi.org/10.1038/323152a0.
Andersson, M. (1994). Sexual selection. — Princeton University Press, Princeton, NJ.
Andersson, M. & Iwasa, Y. (1996). Sexual selection. — Trends Ecol. Evol. 11: 53-58. https://doi.org/10.1016/0169-5347(96)81042-1.
Backwell, P., Jennions, M., Wada, K., Murai, M. & Christy, J. (2006). Synchronous waving in two species of fiddler crabs. — Acta Ethol. 9: 22-25. https://doi.org/10.1007/s10211-005-0009-8.
Backwell, P.R.Y. & Passmore, N.I. (1996). Time constraints and multiple choice criteria in the sampling behaviour and mate choice of the fiddler crab, Uca annulipes. — Behav. Ecol. Sociobiol. 38: 407-416. https://doi.org/10.1007/s002650050258.
Bradford, D.F. & Seymour, R.S. (1988). Influence of water potential on growth and survival of the embryo, and gas conductance of the egg, in a terrestrial breeding frog, Pseudophryne bibroni. — Physiol. Zool. 61: 470-474. https://doi.org/10.1086/physzool.61.5.30161269.
Brooks, R. (2000). Negative genetic correlation between male sexual attractiveness and survival. — Nature 406: 67-70. https://doi.org/10.1038/35017552.
Broström, G. (2019). glmmML: generalized linear models with clustering. — R package version 1.1.0. R Foundation for Statistical Computing, Vienna, available online at https://CRAN.R-project.org/package=glmmML.
Callander, S., Jennions, M.D. & Backwell, P.R.Y. (2012). The effect of claw size and wave rate on female choice in a fiddler crab. — J. Ethol. 30: 151-155. https://doi.org/10.1007/s10164-011-0309-6.
Candolin, U. (2003). The use of multiple cues in mate choice. — Biol. Rev. 78: 575-595. https://doi.org/10.1017/S1464793103006158.
Candolin, U. & Reynolds, J.D. (2001). Sexual signaling in the European bitterling: females learn the truth by direct inspection of the resource. — Behav. Ecol. 12: 407-411. https://doi.org/10.1093/beheco/12.4.407.
Christy, J.H. (1983). Female choice in the resource-defense mating system of the sand fiddler crab, Uca pugilator. — Behav. Ecol. Sociobiol. 12: 169-180. https://doi.org/10.1007/BF00343209.
Christy, J.H. (1987). Female choice and the breeding behavior of the fiddler crab Uca beebei. — J. Crust. Biol. 7: 624-635. https://doi.org/10.1163/193724087X00397.
Christy, J.H. (2003). Reproductive timing and larval dispersal of intertidal crabs: the predator avoidance hypothesis. — Rev. Chil. Hist. Nat. 76: 177-185. http://dx.doi.org/10.4067/S0716-078X2003000200005.
Christy, J.H. & Salmon, M. (1984). Ecology and evolution of mating systems of fiddler crabs (genus Uca). — Biol. Rev. 59: 483-509. https://doi.org/10.1111/j.1469-185X.1984.tb00412.x.
Christy, J.H. & Schober, U.M. (1994). A test for resource-defence mating in the fiddler crab Uca beebei. — Anim. Behav. 48: 795-802. https://doi.org/10.1006/anbe.1994.1303.
da Silva Pires, T.H., da Silva Pinto, K., de Almeida Borghezan, E. & Zuanon, J. (2021). Dominant males exploit the courtship effort of subordinate males in an Amazonian fish. — Anim. Behav. 178: 185-193. https://doi.org/10.1016/j.anbehav.2021.05.023.
de Gibert, J.M., Muñiz, F., Belaústegui, Z. & Hyžný, M. (2013). Fossil and modern fiddler crabs (Uca tangeri: Ocypodidae) and their burrows from SW Spain: ichnologic and biogeographic implications. — J. Crust. Biol. 33: 537-551. https://doi.org/10.1163/1937240X-00002151.
deRivera, C.E. (2005). Long searches for male-defended breeding burrows allow female fiddler crabs, Uca crenulata, to release larvae on time. — Anim. Behav. 70: 289-297. https://doi.org/10.1016/j.anbehav.2004.10.027.
Fisher, R.A. (1930). The genetical theory of natural selection. — Clarendon, Oxford.
Grafen, A. (1990). Sexual selection unhandicapped by the Fisher process. — J. Theor. Biol. 144: 473-516. https://doi.org/10.1016/s0022-5193(05)80087-6.
How, M.J., Hemmi, J.M., Zeil, J. & Peters, R. (2008). Claw waving display changes with receiver distance in fiddler crabs, Uca perplexa. — Anim. Behav. 75: 1015-1022. https://doi.org/10.1016/j.anbehav.2007.09.004.
How, M.J., Zeil, J. & Hemmi, J.M. (2007). Differences in context and function of two distinct waving displays in the fiddler crab, Uca perplexa (Decapoda: Ocypodidae). — Behav. Ecol. Sociobiol. 62: 137-148. https://doi.org/10.1007/s00265-007-0448-5.
How, M.J., Zeil, J. & Hemmi, J.M. (2009). Variability of a dynamic visual signal: the fiddler crab claw-waving display. — J. Comp. Physiol. A 195: 55-67. https://doi.org/10.1007/s00359-008-0382-7.
Hyatt, G.W. (1977). Field studies of size-dependent changes in waving display and other behavior in the fiddler crab, Uca pugilator (Brachyura, Ocypodidae). — Mar. Freshw. Behav. Physiol. 4: 283-292. https://doi.org/10.1080/10236247709386960.
Jennions, M.D. & Backwell, P.R. (1998). Variation in courtship rate in the fiddler crab Uca annulipes: is it related to male attractiveness? — Behav. Ecol. 9: 605-611. https://doi.org/10.1093/beheco/9.6.605.
Keeratipattarakarn, K., Tina, F.W., Jaroensutasinee, M., Jaroensutasinee, K., Chumsri, A. & Chumsri, I. (2020). Burrow characteristics and temporal variation in burrow temperature of the fiddler crab Tubuca rosea (Tweedie, 1937) (Brachyura, Ocypodidae) in southern Thailand. — Crustaceana 93: 1153-1167. https://doi.org/10.1163/15685403-bja10063.
Kerr, K.A., Christy, J.H., Joly-Lopez, Z., Luque, J., Collin, R. & Guichard, F. (2014). Reproducing on time when temperature varies: shifts in the timing of courtship by fiddler crabs. — PLoS ONE 9: e97593. https://doi.org/10.1371/journal.pone.0097593.
Kirkpatrick, M. & Ryan, M.J. (1991). The evolution of mating preferences and the paradox of the lek. — Nature 350: 33-38. https://doi.org/10.1038/350033a0.
Kokko, H. (1998). Should advertising parental care be honest? — Proc. Roy. Soc. Lond. B: Biol. Sci. 265: 1871-1878. https://doi.org/10.1098/rspb.1998.0515.
Lim, S.S. & Diong, C.H. (2003). Burrow-morphological characters of the fiddler crab, Uca annulipes (H. Milne Edwards, 1837) and ecological correlates in a lagoonal beach on Pulau Hantu, Singapore. — Crustaceana 76: 1055-1069. https://doi.org/10.1163/156854003322753411.
Milner, R.N., Detto, T., Jennions, M.D. & Backwell, P.R. (2010). Experimental evidence for a seasonal shift in the strength of a female mating preference. — Behav. Ecol. 21: 311-316. https://doi.org/10.1093/beheco/arp196.
Mitchell, N.J. (2001). Males call more from wetter nests: effects of substrate water potential on reproductive behaviours of terrestrial toadlets. — Proc. Roy. Soc. Lond. B: Biol. Sci. 268: 87-93. https://doi.org/10.1098/rspb.2000.1334.
Møller, A. & Jennions, M. (2001). How important are direct fitness benefits of sexual selection? — Naturwissenschaften 88: 401-415. https://doi.org/10.1007/s001140100255.
Morgan, S.G. & Christy, J.H. (1994). Plasticity, constraint, and optimality in reproductive timing. — Ecology 75: 2185-2203. https://doi.org/10.2307/1940876.
Morgan, S.G. & Christy, J.H. (1995). Adaptive significance of the timing of larval release by crabs. — Am. Nat. 145: 457-479. https://doi.org/10.1086/285749.
Morgan, S.G. & Christy, J.H. (1997). Planktivorous fishes as selective agents for reproductive synchrony. — J. Exp. Mar. Biol. Ecol. 209: 89-101. https://doi.org/10.1016/S0022-0981(96)02690-1.
Murai, M. & Backwell, P.R. (2006). A conspicuous courtship signal in the fiddler crab Uca perplexa: female choice based on display structure. — Behav. Ecol. Sociobiol. 60: 736-741. https://doi.org/10.1007/s00265-006-0217-x.
Nakasone, Y. & Murai, M. (1998). Mating behavior of Uca lactea perplexa (Decapoda: Ocypodidae). — J. Crust. Biol. 18: 70-77. https://doi.org/10.1163/193724098X00089.
O’Brien, D.M., Silla, A.J. & Byrne, P.G. (2020). Nest site selection in a terrestrial breeding frog: interrelationships between nest moisture, pH and male advertisement. — Anim. Behav. 169: 57-64. https://doi.org/10.1016/j.anbehav.2020.08.023.
Perez, D.M., Rosenberg, M.S. & Pie, M.R. (2012). The evolution of waving displays in fiddler crabs (Uca spp., Crustacea: Ocypodidae). — Biol. J. Linn. Soc. 106: 307-315. https://doi.org/10.1111/j.1095-8312.2012.01860.x.
Pomiankowski, A., Iwasa, Y. & Nee, S. (1991). The evolution of costly mate preferences I. Fisher and biased mutation. — Evolution 45: 1422-1430. https://doi.org/10.1111/j.1558-5646.1991.tb02645.x.
Powers, L.W. & Cole, J.F. (1976). Temperature variation in fiddler crab microhabitats. — J. Exp. Mar. Biol. Ecol. 21: 141-157. https://doi.org/10.1016/0022-0981(76)90035-6.
Prum, R.O. (2010). The lande-Kirkpatrick mechanism is the null model of evolution by intersexual selection: implications for meaning, honesty, and design in intersexual signals. — Evolution 64: 3085-3100. https://doi.org/10.1111/j.1558-5646.2010.01054.x.
R Core Team (2021). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna, available online at https://www.R-project.org/.
Reaney, L.T. (2009). Female preference for male phenotypic traits in a fiddler crab: do females use absolute or comparative evaluation? — Anim. Behav. 77: 139-143. https://doi.org/10.1016/j.anbehav.2008.09.019.
Reaney, L.T. & Backwell, P.R.Y. (2007). Temporal constraints and female preference for burrow width in the fiddler crab, Uca mjoebergi. — Behav. Ecol. Sociobiol. 61: 1515-1521. https://doi.org/10.1007/s00265-007-0383-5.
Reaney, L.T., Sims, R.A., Sims, S.W., Jennions, M.D. & Backwell, P.R. (2008). Experiments with robots explain synchronized courtship in fiddler crabs. — Curr. Biol. 18: R62-R63. https://doi.org/10.1016/j.cub.2007.11.047.
Tina, F.W. (2020). Effects of competition, female size, and their distance on the claw-waving rate of male fiddler crabs (Brachyura, Ocypodidae). — Anim. Biol. 70: 1-11. https://doi.org/10.1163/15707563-20191121.
Tina, F.W., Jaroensutasinee, M. & Jaroensutasinee, K. (2015a). Effects of population density on female and male burrow characteristics in the fiddler crab, Uca bengali Crane, 1975. — Crustaceana 88: 1283-1299. https://doi.org/10.1163/15685403-00003492.
Tina, F.W., Jaroensutasinee, M., Sutthakiet, O. & Jaroensutasinee, K. (2015b). The fiddler crab, Uca bengali Crane, 1975: population biology and burrow characteristics on a riverbank in southern Thailand. — Crustaceana 88: 791-807. https://doi.org/10.1163/15685403-00003450.
Tina, F.W., Jaroensutasinee, M. & Jaroensutasinee, K. (2018a). Claw regeneration, waving display and burrow characteristics of Austruca perplexa (H. Milne Edwards, 1852) (Brachyura, Ocypodidae) from southern Thailand. — Crustaceana 91: 1247-1257. https://doi.org/10.1163/15685403-00003820.
Tina, F.W., Jaroensutasinee, M., Keeratipattarakarn, K. & Jaroensutasinee, K. (2018b). Surface mating influences chimney/burrow characteristics of Uca rosea (Tweedie, 1937) (Brachyura, Ocypodidae) in southern Thailand. — Crustaceana 91: 311-320. https://doi.org/10.1163/15685403-00003747.
Tina, F.W., Jaroensutasinee, M., Jaroensutasinee, K. & Chumsri, A. (2018c). Do mudballs around burrows affect burrow characteristics of the fiddler crab Austruca annulipes (H. Milne Edwards, 1837) (Brachyura, Ocypodidae)? — Crustaceana 91: 489-500. https://doi.org/10.1163/15685403-00003779.
Tina, F.W., Jaroensutasinee, M. & Jaroensutasinee, K. (2018d). Receiver female body size and distances affect the claw-waving rate of signaller males in fiddler crabs (Brachyura, Ocypodidae). — Behaviour 155: 905-914. http://dx.doi.org/10.1163/1568539X-00003510.
Tina, F.W. & Muramatsu, D. (2020). Size-dependent mating preference of the male fiddler crab Austruca perplexa. — Ethology 126: 68-75. https://doi.org/10.1111/eth.12961.
Tina, F.W. & Muramatsu, D. (2021). Small males of the fiddler crab Austruca perplexa court more in the off-peak breeding period when large males court less. — J. Ethol. 39: 297-308. https://doi.org/10.1007/s10164-021-00703-4.
Wolfenbarger, L.L. (1999). Red coloration of male northern cardinals correlates with mate quality and territory quality. — Behav. Ecol. 10: 80-90. https://doi.org/10.1093/beheco/10.1.80.
Zahavi, A. (1975). Mate selection — a selection for a handicap. — J. Theor. Biol. 53: 205-214. https://doi.org/10.1016/0022-5193(75)90111-3.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 369 | 313 | 12 |
Full Text Views | 31 | 31 | 0 |
PDF Views & Downloads | 73 | 73 | 0 |
Females often choose mates based on their courtship signals. Males may signal their heritable genetic quality, defended resources, or parental care efforts; however, the reasons why females choose males based on their signals are often not clear. Here, we show that, in the fiddler crab Austruca perplexa, male signals (major-claw waving rates) were correlated with important characteristics of their defended resources (width and depth of breeding burrows). By using the male signals, females may be able to roughly predict the burrow quality and decide whether to enter and check the burrow characteristics. The signals are predicted to be honest because the female’s final decision is based on burrow quality. Since females can reject males if their burrow quality is insufficient for breeding, the courtship efforts of deceptive males will be dismissed. The honesty of the signals is beneficial for both sexes and thus easily evolved in their signalling system.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 369 | 313 | 12 |
Full Text Views | 31 | 31 | 0 |
PDF Views & Downloads | 73 | 73 | 0 |