Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
The opportunity and the information available to secure food resources drives foraging behaviour. We tested how inconsistent hole-food pairings and coverings could alter foraging performance, even when food availability is held constant. In our first experiment, we exposed pigeons (Columba livia) to a board in which each of the 60 covered holes contained one food item and to another board in which only one third of the 180 covered holes randomly contained one food item. In a second experiment, only the 60-hole board was used and the holes were not covered. The pigeons increased their body weight, gave fewer pecks per hole, revisited holes less often, and inspected fewer adjacent holes with 180 rather than 60 covered holes while eating similar amounts. However, their pecks were disproportionately higher near the edges of the board with 60 covered holes. This behaviour was not evident in the second experiment, when the food items were visible and individuals could know where food was available. Thus, the information about food location may drive foraging behaviour more directly than the information about food availability.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Anselme, P. & Güntürkün, O. (2019). How foraging works: uncertainty magnifies food-seeking motivation. — Behav. Brain Sci. 42: e35. DOI:10.1017/S0140525X18000948.
Anselme, P., Robinson, M.J.F. & Berridge, K.C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. — Behav. Brain Res. 238: 53-61. DOI:10.1016/j.bbr.2012.10.006.
Bateson, M., Andrews, C., Dunn, J., Egger, C.B.C.M., Gray, F., Mchugh, M. & Nettle, D. (2021). Food insecurity increases energetic efficiency, not food consumption: an exploratory study in European starlings. — PeerJ 9: e11541. DOI:10.7717/peerj.11541.
Bean, D., Mason, G.J. & Bateson, M. (1999). Contrafreeloading in starlings: testing the information hypothesis. — Behaviour 136: 1267-1282. DOI:10.1163/156853999500712.
Bremhorst, A., Sutter, N.A., Würbel, H., Mills, D.S. & Riemer, S. (2019). Differences in facial expressions during positive anticipation and frustration in dogs awaiting a reward. — Sci. Rep. 9: 19312. DOI:10.1038/s41598-019-55714-6.
Brodin, A. (2007). Theoretical models of adaptive energy management in small wintering birds. — Philos. Trans. Roy. Soc. B: Biol. Sci. 362: 1857-1871. DOI:10.1098/rstb.2006.1812.
Charnov, E.L. (1976). Optimal foraging, the marginal value theorem. — Theor. Popul. Biol. 9: 129-136. DOI:10.1016/0040-5809(76)90040-X.
Cheon, B.K. & Hong, Y.-Y. (2017). Mere experience of low subjective socioeconomic status stimulates appetite and food intake. — Proc. Natl. Acad. Sci. USA 114: 72-77. DOI:10.1073/pnas.1607330114.
Cornelius, E.A., Vezina, F., Regimbald, L., Hallot, F., Petit, M., Love, O.P. & Karasov, W.H. (2017). Chickadees faced with unpredictable food increase fat reserves but certain components of their immune function decline. — Physiol. Biochem. Zool. 90: 190-200. DOI:10.1086/68991.
Crawford, L.L., Steirn, J.N. & Pavlik, W.B. (1985). Within- and between-subjects partial reinforcement effects with an autoshaped response using Japanese quail (Coturnix coturnix japonica). — Anim. Learn. Behav. 13: 85-92. DOI:10.3758/BF03213369.
Cresswell, W. (1998). Diurnal and seasonal variation in blackbirds Turdus merula: consequences for mass-dependent predation risk. — J. Anim. Ecol. 67: 78-90. DOI:10.1046/j.1365-2656.1998.00174.x.
Cuthill, I.C., Maddocks, S.A., Weall, C.V. & Jones, E.K.M. (2000). Body mass regulation in response to changes in feeding predictability and overnight energy expenditure. — Behav. Ecol. 11: 189-195. DOI:10.1093/beheco/11.2.189.
Daunt, F., Afanasyev, V., Silk, J.R.D. & Wanless, S. (2006). Extrinsic and intrinsic determinants of winter foraging and breeding phenology in a temperate seabird. — Behav. Ecol. Sociobiol. 59: 381-388. DOI:10.1007/s00265-005-0061-4.
Ekman, J.B. & Hake, M.K. (1990). Monitoring starvation risk: adjustments of body reserves in greenfinches (Carduelis chloris L.) during periods of unpredictable foraging success. — Behav. Ecol. 1: 62-67. DOI:10.1093/beheco/1.1.62.
Feenders, G. & Smulders, T.V. (2011). Magpies can use local cues to retrieve their food caches. — Anim. Cogn. 14: 235-243. DOI:10.1007/s10071-010-0357-2.
Flaherty, C.F. (1996). Incentive relativity. — Cambridge University Press, Cambridge.
Forkman, B. (1991). Some problems with current patch choice theory: a study on the Mongolian gerbil. — Behaviour 117: 243-254. DOI:10.1163/156853991X00553.
Forkman, B. (1996). The foraging behaviour of Mongolian gerbils: a behavioural need or a need to know? — Behaviour 133: 129-143. DOI:10.1163/156853996X00071.
Freidin, E., Cuello, M.I. & Kacelnik, A. (2009). Successive negative contrast in a bird: starlings’ behaviour after unpredictable negative changes in food quality. — Anim. Behav. 77: 857-865. DOI:10.1016/j.anbehav.2008.12.010.
Glueck, A.C., Torres, C. & Papini, M.R. (2018). Transfer between anticipatory and consummatory tasks involving reward loss. — Learn. Motiv. 63: 105-125. DOI:10.1016/j.lmot.2018.05.001.
Gosler, A.G., Greenwood, J.J.D. & Perrins, C. (1995). Predation risk and the cost of being fat. — Nature 377: 621-623. DOI:10.1038/377621a0.
Gottlieb, D.A. (2004). Acquisition with partial and continuous reinforcement in pigeon autoshaping. — Learn. Behav. 32: 321-334. DOI:10.3758/BF03196031.
Heppner, F. (1965). Sensory mechanisms and environmental clues used by the American Robin in locating earthworms. — Condor 67: 247-256. DOI:10.2307/1365403.
Howery, L.D., Bailey, D.W., Ruyle, G.B. & Renken, W.J. (2000). Cattle use visual cues to track food locations. — Appl. Anim. Behav. Sci. 67: 1-14. DOI:10.1016/S0168-1591(99)00118-5.
Ishida, M., Couvillon, P.A. & Bitterman, M.E. (1992). Acquisition and extinction of a shuttling response in honeybees (Apis mellifera) as a function of the probability of reward. — J. Comp. Psychol. 106: 262-269. DOI:10.1037/0735-7036.106.3.262.
Krams, I. (2000). Length of feeding day and body weight of great tits in a single- and two-predator environment. — Behav. Ecol. Sociobiol. 48: 147-153. DOI:10.1007/s002650000214.
Lamprea, M.R., Cardenas, F.P., Setem, J. & Morato, J. (2008). Thigmotactic responses in an open-field. — Braz. J. Med. Biol. Res. 41: 135-140. DOI:10.1590/S0100-879X2008000200010.
Laran, J. & Salerno, A. (2013). Life-history strategy, food choice, and caloric consumption. — Psychol. Sci. 24: 167-173. DOI:10.1177/0956797612450033.
Laurent Salazar, M.-O., Planas-Sitjà, I., Sempo, G. & Deneubourg, J.-L. (2018). Individual thigmotactic preference affects the fleeing behavior of the American cockroach (Blattodea: Blattidae). — J. Insect Sci. 9: 1-7. DOI:10.1093/jisesa/iex108.
Lima, S.L. (1986). Predation risk and unpredictable feeding conditions: determinants of body mass in birds. — Ecology 67: 377-385. DOI:10.2307/1938580.
Lima, S.L. & Dill, L.M. (1990). Behavioral decisions made under the risk of predation: a review and prospectus. — Can. J. Zool. 68: 619-640. DOI:10.1139/z90-092.
Lovette, I.J. & Holmes, R.T. (1995). Foraging behavior of American redstarts in breeding and wintering habitats: implications for relative food availability. — Condor 97: 782-791. DOI:10.2307/1369186.
McNamara, J.M. & Houston, A.I. (1990). The value of fat reserves and the tradeoff between starvation and predation. — Acta Biotheor. 38: 37-61. DOI:10.1007/BF00047272.
McNamara, J.M., Houston, A.I. & Lima, S.L. (1994). Foraging routines of small birds in winter: a theoretical investigation. — J. Avian Biol. 25: 287-302. DOI:10.2307/3677276.
Nath, T., Mathis, A., Chen, A.C., Patel, A., Bethge, M. & Mathis, M.W. (2019). Using DeepLabCut for 3D markerless pose estimation across species and behaviors. — Nature Protoc. 14: 2152-2176. DOI:10.1038/s41596-019-0176-0.
Nettle, D. & Bateson, M. (2019). Food-insecure women eat a less diverse diet in a more temporally variable way: evidence from the US national health and nutrition examination survey, 2013-4. — J. Obesity 2019: 7174058. DOI:10.1155/2019/7174058.
Okuyama, T. (2010). Prey density-handling time in a predator-prey model. — Comm. Ecol. 11: 91-96. DOI:10.1556/ComEc.11.2010.1.13.
Olsson, O., Wiktander, U. & Nilsson, S.G. (2000). Daily foraging routines and feeding effort of a small bird feeding on a predictable resource. — Proc. Roy. Soc. Lond. B: Biol. Sci. 267: 1457-1461. DOI:10.1098/rspb.2000.1164.
Papini, M.R., Penagos-Corzo, J.C. & Pérez-Acosta, A.M. (2019). Avian emotions: comparative perspectives on fear and frustration. — Front. Psychol. 9: 2707. DOI:10.3389/fpsyg.2018.02707.
Pearce, J.M., Kaye, H. & Collins, L. (1985). A comparison of the effects of partial reinforcement schedules using a within subject serial autoshaping procedure. — Q. J. Exp. Psychol. (Section B) 37: 379-396. DOI:10.1080/14640748508401176.
Pellegrini, S., Muzio, R.N., Mustaca, A.E. & Papini, M.R. (2004). Successive negative contrast after partial reinforcement in the consummatory behavior of rats. — Learn. Motiv. 35: 303-321. DOI:10.1016/j.lmot.2004.04.001.
Perkins, C.C., Beavers, W.O., Hancock, R.A., Hemmendinger, P.C., Hemmendinger, D. & Ricci, J.A. (1975). Some variables affecting rate of key pecking during response-independent procedures (autoshaping). — J. Exp. Anal. Behav. 24: 59-72. DOI:10.1901/jeab.1975.24-59.
Pravosudov, V.V. & Grubb, T.C. (1997). Management of fat reserves and food caches in tufted titmice (Parus bicolor) in relation to unpredictable food supply. — Behav. Ecol. 8: 332-339. DOI:10.1093/beheco/8.3.332.
Ratikainen, I.I. & Wright, J. (2013). Adaptive management of body mass by Siberian Jays. — Anim. Behav. 85: 427-434. DOI:10.1016/j.anbehav.2012.12.002.
Rescorla, R.A. (1999). Within-subject partial reinforcement extinction effect in autoshaping. — Q. J. Exp. Psychol. (Section B): Comp. Physiol. Psychol. 52: 75-87. DOI:10.1080/713932693.
Rovero, F., Hughes, R.N. & Chelazzi, G. (2000). When time is of the essence: choosing a currency for prey handling costs. — J. Anim. Ecol. 69: 683-689. DOI:10.1046/j.1365-2656.2000.00426.x.
Simon, P., Dupuis, R. & Costentin, J. (1994). Thigmotaxis as an index of anxiety in mice: influence of dopaminergic transmissions. — Behav. Brain Res. 61: 59-64. DOI:10.1016/0166-4328(94)90008-6.
Simons, A.M. (2011). Modes of response to environmental change and the elusive empirical evidence for bet hedging. — P. Roy. Soc. B-Biol. Sci. 278: 1601-1609. DOI:10.1098/rspb.2011.0176.
Swaffield, J. & Roberts, S.C. (2015). Exposure to cues of harsh or safe environmental conditions alters food preference. — Evol. Psych. Sci. 1: 69-76. DOI:10.1007/s40806-014-0007-z.
Timberlake, W. (1994). Behavior systems, associationism, and Pavlovian conditioning. — Psychon. Bull. Rev. 1: 405-420. DOI:10.3758/BF03210945.
Walz, N., Mühlberger, A. & Pauli, P. (2016). A human open field test reveals thigmotaxis related to agoraphobic fear. — Biol. Psychiatr. 80: 390-397. DOI:10.1016/j.biopsych.2015.12.016.
Wiersma, P. & Verhulst, S. (2005). Effects of intake rate on energy expenditure, somatic repair and reproduction of zebra finches. — J. Exp. Biol. 208: 4091-4098. DOI:10.1242/jeb.01854.
Wittek, N., Wittek, K., Güntürkün, O. & Anselme, P. (2021). Decreased key pecking in response to reward uncertainty and surprising delay extension in pigeons. — Int. J. Comp. Psychol. 34: 1-17. DOI:10.46867/ijcp.2021.34.00.02.
Witter, M.S. & Cuthill, I.C. (1993). The ecological costs of avian fat storage. — Philos. Trans. Roy. Soc. B: Biol. Sci. 340: 73-92. DOI:10.1098/rstb.1993.0050.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 334 | 334 | 26 |
Full Text Views | 25 | 25 | 1 |
PDF Views & Downloads | 34 | 34 | 3 |
The opportunity and the information available to secure food resources drives foraging behaviour. We tested how inconsistent hole-food pairings and coverings could alter foraging performance, even when food availability is held constant. In our first experiment, we exposed pigeons (Columba livia) to a board in which each of the 60 covered holes contained one food item and to another board in which only one third of the 180 covered holes randomly contained one food item. In a second experiment, only the 60-hole board was used and the holes were not covered. The pigeons increased their body weight, gave fewer pecks per hole, revisited holes less often, and inspected fewer adjacent holes with 180 rather than 60 covered holes while eating similar amounts. However, their pecks were disproportionately higher near the edges of the board with 60 covered holes. This behaviour was not evident in the second experiment, when the food items were visible and individuals could know where food was available. Thus, the information about food location may drive foraging behaviour more directly than the information about food availability.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 334 | 334 | 26 |
Full Text Views | 25 | 25 | 1 |
PDF Views & Downloads | 34 | 34 | 3 |