Animals of a wide range of taxonomic groups mix various food sources to achieve a nutritionally balanced diet. The strategies they adopt to balance multiple nutrients depend on their availability in the environment. Behavioural and physiological adaptations to forage for nutrient-differing food sources have rarely been investigated in respect to nutrient availability in the environment. We developed a simulation model to explore the strategy consumers should adopt in response to the abundance of two nutritionally complementary food types. Results show that (1) consumers should invest more effort in detecting the scarce resource; (2) there is an optimized negative relationship between effort foragers should allocate to find the two types of food; (3) consumers should exhibit higher selectivity when the proportion of food types in the habitat deviates from their optimal ratio in the diet. These findings have important implications for pest control using predators that benefit from plant-based food supplements.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Abrams, P.A. (2010). Implications of flexible foraging for interspecific interactions: lessons from simple models. — Funct. Ecol. 24: 7-17.
Al Shareefi, E. & Cotter, S.C. (2019). The nutritional ecology of maturation in a carnivorous insect. — Behav. Ecol. 30: 256-266.
Balestrieri, A., Remonti, L., Saino, N. & Raubenheimer, D. (2019). The ‘omnivorous badger dilemma’: towards an integration of nutrition with the dietary niche in wild mammals. — Mammal Rev. 49: 324-339.
Bateman, P.W. (1997). Operational sex ratio, female competition and mate choice in the ephippigerine bushcricket Steropleurus stali Bolivar. — J. Orthoptera Res. 6: 101-104.
Bazazi, S., Romanczuk, P., Thomas, S., Schimansky-Geier, L., Hale, J.J., Miller, G.A., Sword, G.A., Simpson, S.J. & Couzin, I.D. (2011). Nutritional state and collective motion: from individuals to mass migration. — Proc. Roy. Soc. Lond. B: Biol. Sci. 278: 356-363.
Behmer, S.T. (2009). Insect herbivore nutrient regulation. — Annu. Rev. Entomol. 54: 165-187.
Behmer, S.T., Cox, E., Raubenheimer, D. & Simpson, S.J. (2003). Food distance and its effect on nutrient balancing in a mobile insect herbivore. — Anim. Behav. 66: 665-675.
Bell, W.J. (1990). Searching behavior patterns in insects. — Annu. Rev. Entomol. 35: 447-467.
Bell, W.J. (ed.) (1991). Searching behaviour. The behavioural ecology of finding resources. — Chapman and Hall, London.
Bernays, E.A. (2001). Neural limitations in phytophagous insects: implications for diet breadth and evolution of host affiliation. — Annu. Rev. Entomol. 46: 703-727.
Bernays, E.A., Bright, K.L., Gonzalez, N. & Angel, J. (1994). Dietary mixing in a generalist herbivore: tests of two hypotheses. — Ecology 75: 1997-2006.
Bond, A.B. (1983). Visual search and selection of natural stimuli in the pigeon: the attention threshold hypothesis. — J. Experiment. Psychol.: Anim. Behav. Process. 9: 292-306.
Bruins, E.B.A.W., Wajnberg, E. & Pak, G.A. (1994). Genetic variability in the reactive distance in Trichogramma brassicae after automatic tracking of the walking path. — Entomol. Exp. Appl. 72: 297-303.
Clissold, F.J., Tedder, B.J., Conigrave, A.D. & Simpson, S.J. (2010). The gastrointestinal tract as a nutrient-balancing organ. — Proc. Roy. Soc. Lond. B: Biol. Sci. 277: 1751-1759.
Coll, M. & Guershon, M. (2002). Omnivory in terrestrial arthropods: mixing plant and prey diets. — Ann. Rev. Entomol. 47: 267-297.
Coogan, S.C.P., Raubenheimer, D., Stenhouse, G.B. & Nielsen, S.E. (2014). Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis. — PLoS ONE 9: e97968.
Cui, Z.-W., Wang, Z.-L., Shao, Q., Raubenheimer, D. & Lu, J.-Q. (2018). Macronutrient signature of dietary generalism in an ecologically diverse primate in the wild. — Behav. Ecol. 29: 804-813.
Curio, E. (1976). The ethology of predation. — Springer, Berlin.
Damien, M., Barascou, L., Ridel, A., van Baaren, J. & Le Lann, C. (2019). Food or host: do physiological state and flower type affect foraging decisions of parasitoids? — Behav. Ecol. Sociobiol. 73: 1-12.
Drescher, M., Heitkönig, I.M., Raats, J.G. & Prins, H.H. (2006). The role of grass stems as structural foraging deterrents and their effects on the foraging behaviour of cattle. — Appl. Anim. Behav. Sci. 101: 10-26.
Forget, P.M., Hammmond, D.S., Milleron, T. & Thomas, R. (2002). Seasonalilty of fruiting and food hoarding by rodents in Neotropical forests: consequences for seed dispersal and seedling recruitment. — In: Seed dispersal and frugiory: ecology, evolution and conservation (Levey, D.J., Silva, W.R. & Galetti, M., eds). CABI Publishing, Wallingford, p. 241-256.
Forrest, S. (1993). Genetic algorithms: principles of natural selection applied to computation. — Science 261: 872-878.
Garrigan, D.A. (1994). Host selection by Vanessa cardui butterflies: the ecology and evolution of diet breadth. — Doctoral dissertation, The University of Utah, Salt Lake City, UT.
Groenteman, R., Guershon, M. & Coll, M. (2006). Effects of leaf nitrogen content on oviposition site selection, offspring performance, and intraspecific interactions in an omnivorous bug. — Ecol. Entomol. 31: 155-161.
Hagler, J.R., Jackson, C.G. & Blackmer, J.L. (2010). Diet selection exhibited by juvenile and adult lifestages of the omnivores western tarnished plant bug, Lygus hesperus and tarnished plant bug, Lygus lineolaris. — J. Insect Sci. 10: 127.
Hancock, P.E. & Milner-Gulland, E.J. (2006). Optimal movement strategies for social foragers in unpredictable environments. — Ecology 87: 2094-2102.
Hoffman, R.R. (1989). Evolutionary steps of ecophysiological adaptations and diversification of ruminants; a comparative view of their digestive systems. — Oecologia 78: 443-457.
Hoffmeister, T.S. & Wajnberg, E. (2008). Finding optimal behaviors with genetic algorithms. — In: Behavioural ecology of insect parasitoids — from theoretical approaches to field applications (Wajnberg, E., Bernstein, C. & van Alphen, J., eds). Blackwell Publishing, Oxford, p. 384-401.
House, H.L. (1969). Effects of different proportions of nutrients on insects. — Entomol. Exp. Appl. 12: 651-669.
Huse, G., Strand, E. & Giske, J. (1999). Implementing behaviour in individual-based models using neural networks and genetic algorithms. — Evol. Ecol. 13: 469-483.
Jarman, P.J. & Sinclair, A.R.E. (1979). Feeding strategy and the pattern of resource partitioning in ungulates. — In: Serengeti: dynamics of an ecosystem (Sinclair, A.R.E. & Norton-Griffiths, M., eds). University of Chicago Press, Chicago, IL, p. 130-163.
Jaworski, C.C., Bompard, A., Genies, L., Amiens-Jensen, K., Mayntz, D., Toft, S., Raubenheimer, D. & Simpson, S.J. (2011). Nutrient regulation in a predator, the wolf spider Pardosa prativaga. — Anim. Behav. 81: 993-999.
Jensen, K., Mayntz, D., Toft, S., Clissold, F.J., Hunt, J., Raubenheimer, D. & Simpson, S.J. (2012). Optimal foraging for specific nutrients in predatory beetles. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 2212-2218.
Jirotkul, M. (1999). Operational sex ratio influences female preference and male–male competition in guppies. — Anim. Behav. 58: 287-294.
Kause, A., Haukioja, E. & Hanhimäki, S. (1999). Phenotypic plasticity in foraging behavior of sawfly larvae. — Ecology 80: 1230-1241.
Kay, A. (2002). Applying optimal foraging theory to assess nutrient availability ratios for ants. — Ecology 83: 1935-1944.
Krebs, J.R. (1973). Behavioral aspects of predation. — In: Perspectives in ethology (Bateson, P.P.G. & Klopfer, P.H., eds). Plenum Press, New York, NY, p. 73-111.
Le Couteur, D.G., Solon-Biet, S., Cogger, V.C., Mitchell, S.J., Senior, A., de Cabo, R., Raubenheimer, D. & Simpson, S.J. (2016). The impact of low-protein high-carbohydrate diets on aging and lifespan. — Cell. Mol. Life Sci. 73: 1237-1252.
Lee, K.P., Simpson, S.J., Clissold, F.J., Brooks, R., Ballard, J.W.O., Taylor, P.W., Soran, N. & Raubenheimer, D. (2008). Lifespan and reproduction in Drosophila: new insights from nutritional geometry. — Proc. Natl. Acad. Sci. USA 105: 2498-2503.
Leon-Beck, M. & Coll, M. (2007). Plant and prey consumption cause a similar reductions in cannibalism by an omnivorous bug. — J. Insect Behav. 20: 67-76.
Lihoreau, M., Charleston, M.A., Senior, A.M., Clissold, F.J., Raubenheimer, D., Simpson, S.J. & Buhl, J. (2017). Collective foraging in spatially complex nutritional environments. — Phil. Trans. Roy. Soc. Lond. B: Biol. Sci. 372: 20160238.
Lundberg, P. & Palo, R.T. (1993). Resource use, plant defences, and optimal digestion in ruminants. — Oikos 68: 224-228.
Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S. & Simpson, S.J. (2005). Nutrient-specific foraging in invertebrate predators. — Science 307: 111-113.
Mayntz, D., Nielsen, V.H., Sørensen, A., Toft, S., Raubenheimer, D., Hejlesen, C. & Simpson, S.J. (2009). Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. — Anim. Behav. 77: 349-355.
Morehouse, N.I., Raubenheimer, D., Kay, A. & Bertram, S.M. (2020). Integrating nutritional and behavioral ecology: mutual benefits and new frontiers. — Adv. Stud. Behav. 52: 29-63.
Oz, S. (2019). The effect of prey and plant-provided food availability in the habitat on the diet of the seven-spotted ladybeetle, Coccinella septempunctata. — MSc Thesis, The Hebrew University of Jerusalem, Jerusalem.
Passos, C., Tassino, B., Reyes, F. & Rosenthal, G.G. (2014). Seasonal variation in female mate choice and operational sex ratio in wild populations of an annual fish, Austrolebias reicherti. — PLoS ONE 9: e101649.
Piper, M.D.W., Soultoukis, G.A., Blanc, E., Mesaros, A., Herbert, S.L., Juricic, P., He, X., Atanassov, I., Salmonowicz, H., Yang, M., Simpson, S.J., Ribeiro, C. & Partridge, L. (2017). Matching dietary amino acid balance to the in silico-translated exome optimizes growth and reproduction without cost to lifespan. — Cell Metabol. 25: 610-621.
Pulliam, H.R. (1975). Optimal foraging with nutrient constraints. — Am. Nat. 109: 765-768.
Pumariño, L., Alomar, O. & Agustí, N. (2011). Development of specific ITS markers for plant DNA identification within herbivorous insects. — Bull. Entomol. Res. 101: 271-276.
Put, K., Bollens, T., Wackers, F.L. & Pekas, A. (2012). Type and spatial distribution of food supplements impact population development and dispersal of the omnivore predator Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae). — Biol. Contr. 63: 172-180.
Pyke, G.H., Pulliam, H.R. & Charnov, E.L. (1977). Optimal foraging: a selective review of theory and tests. — Q. Rev. Biol. 52: 137-154.
Raubenheimer, D. & Simpson, S.J. (1993). The geometry of compensatory feeding in the locust. — Anim. Behav. 45: 953-964.
Raubenheimer, D. & Simpson, S.J. (1998). Nutrient transfer functions: the site of integration between feeding behaviour and nutritional physiology. — Chemoecology 8: 61-68.
Raubenheimer, D. & Simpson, S.J. (2018). Nutritional ecology and foraging theory. — Curr. Opin. Insect Sci. 27: 38-45.
Raubenheimer, D., Mayntz, D., Simpson, S.J. & Tøft, S. (2007). Nutrient-specific compensation following diapause in a predator: implications for intraguild predation. — Ecology 88: 2598-2608.
Roff, D.A. (ed.) (2002). Life history evolution. — Sinauer Associates, Sunderland, MA.
Roitberg, B.D. (1985). Search dynamics in fruit-parasitic insects. — J. Insect Physiol. 31: 865-872.
Runagall-McNaull, A., Bonduriansky, R. & Crean, A.J. (2015). Dietary protein and lifespan across the metamorphic boundary: protein-restricted larvae develop into short-lived adults. — Sci. Rep. 5: 11783.
Ruxton, G.D. & Beauchamp, G. (2008). The application of genetic algorithms in behavioural ecology, illustrated with a model of anti-predator vigilance. — J. Theoret. Biol. 250: 435-448.
Schmidt, J.M., Sebastian, P., Wilder, S.M. & Rypstra, A.L. (2012). The nutritional content of prey affects the foraging of a generalist arthropod predator. — PLoS ONE 7: e49223.
Segoli, M. & Wajnberg, E. (2020). The combined effect of host and food availability on optimized parasitoid life history traits based on a three-dimensional trade-off surface. — J. Evol. Biol. 33: 850-857.
Shakya, S., Weintraub, P.G. & Coll, M. (2009). Effect of pollen supplement on intraguild predatory interactions between two omnivores: the importance of spatial dynamics. — Biol. Contr. 50: 281-287.
Simpson, S.J. & Raubenheimer, D. (1993). A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. — Phil. Trans. Roy. Soc. Lond. B: Biol. Sci. 342: 381-402.
Simpson, S.J. & Raubenheimer, D. (eds) (2012). The nature of nutrition: a unifying framework from animal adaptation to human obesity. — Princeton University Press, Princeton, NJ.
Simpson, S.J., Raubenheimer, D., Cogger, V.C., Macia, L., Solon-Biet, S.M., Le Couteur, D.G. & George, J. (2018). The nutritional geometry of liver disease including non-alcoholic fatty liver disease. — J. Hepatol. 68(2): 316-325.
Simpson, S.J., Sibly, R.M., Lee, K.P., Behmer, S.T. & Raubenheimer, D. (2004). Optimal foraging when regulating intake of multiple nutrients. — Anim. Behav. 68: 1299-1311.
Simpson, S.J., Sword, G.A., Lorch, P.D. & Couzin, I.D. (2006). Cannibal crickets on a forced march for protein and salt. — Proc. Natl. Acad. Sci. USA 103: 4152-4156.
Spalinger, D.E., Robbins, C.T. & Hanley, T. (1986). The assessment of handling time in ruminants: the effect of plant chemical and physical structure on the rate of break-down of plant particles in the rumen of mule deer and elk. — Can. J. Zool. 64: 312-321.
Stearns, S.C. (ed.) (1992). The evolution of life histories. — Oxford University Press, New York, NY.
Stephens, D.W. & Krebs, J.R. (eds) (1986). Foraging theory. — Princeton University Press, Princeton, NJ.
Sumida, B.H., Houston, A.I., McNamara, J.M. & Hamilton, W.D. (1990). Genetic algorithms and evolution. — J. Theor. Biol. 147: 59-84.
Toft, S., Pavón-Peláez, C., Martinez-Villar, M., Rengifo, L., Arroyave, A., Pompozzi, G., Franco, V. & Albo, M.J. (2021). Contrasting patterns of food and macronutrient limitation in the field among co-existing omnivorous carnivores. — Ecol. Entomol. 46: 898-909.
Tucker, A.D., Burke, R.L. & Tulipani, D.C. (2018). Foraging ecology and habitat choice. — In: Ecology and conservation of the diamond-backed terrapin (Roosenburg, W.M. & Kennedy, V.S., eds). John Hopkins University Press, Baltimore, MD, p. 147-160.
Ugine, T.A., Krasnoff, S.B., Grebenok, R.J., Behmer, S.T. & Losey, J.E. (2019). Prey nutrient content creates omnivores out of predators. — Ecol. Lett. 22: 275-283.
van Rijn, P.C.J., van Houten, Y.M. & Sabelis, M.W. (2002). How plants benefit from providing food to predators even when it is also edible to herbivores. — Ecology 83: 2664-2679.
Wäckers, F.L., van Rijn, P.C.J. & Bruin, J. (eds) (2005). Plant-provided food for carnivorous insects: a protective mutualism and its applications. — Cambridge University Press, Cambridge.
Wajnberg, E. & Colazza, S. (1998). Genetic variability in the area searched by a parasitic wasp. Analysis from automatic video tracking of the walking path. — J. Insect Physiol. 44: 437-444.
Wajnberg, E., Coquillard, P., Vet, L.E.M. & Hoffmeister, T. (2012). Optimal resource allocation to survival and reproduction in parasitic wasps foraging in fragmented habitats. — PLoS ONE 7: e38227.
Wajnberg, E., Hoffmeister, T.S. & Coquillard, P. (2013). Optimal within-patch movement strategies for optimising patch residence time: an agent-based modelling approach. — Behav. Ecol. Sociobiol. 67: 2053-2063.
Waldbauer, G.P. & Friedman, S. (1991). Self-selection of optimal diets by insects. — Annu. Rev. Entomol. 36: 43-63.
Walker, S.J., Goldschmidt, D. & Ribeiro, C. (2017). Craving for the future: the brain as a nutritional prediction system. — Curr. Opin. Insect Sci. 23: 96-103.
Wang, L., Wang, D., He, Z., Liu, G. & Hodgkinson, K.C. (2010). Mechanisms linking plant species richness to foraging of a large herbivore. — J. Appl. Ecol. 47: 868-875.
Warbrick-Smith, J., Raubenheimer, D., Simpson, S.J. & Behmer, S.T. (2009). Three hundred and fifty generations of extreme food specialisation: testing predictions of nutritional ecology. — Entomol. Exp. Appl. 132: 65-75.
Westoby, M. (1978). What are the biological bases of varied diets? — Am. Nat. 112: 627-631.
Yano, E. (1978). A simulation model of searching behaviour of a parasite. — Res. Pop. Ecol. 25: 105-122.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 322 | 322 | 20 |
Full Text Views | 36 | 36 | 0 |
PDF Views & Downloads | 69 | 69 | 0 |
Animals of a wide range of taxonomic groups mix various food sources to achieve a nutritionally balanced diet. The strategies they adopt to balance multiple nutrients depend on their availability in the environment. Behavioural and physiological adaptations to forage for nutrient-differing food sources have rarely been investigated in respect to nutrient availability in the environment. We developed a simulation model to explore the strategy consumers should adopt in response to the abundance of two nutritionally complementary food types. Results show that (1) consumers should invest more effort in detecting the scarce resource; (2) there is an optimized negative relationship between effort foragers should allocate to find the two types of food; (3) consumers should exhibit higher selectivity when the proportion of food types in the habitat deviates from their optimal ratio in the diet. These findings have important implications for pest control using predators that benefit from plant-based food supplements.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 322 | 322 | 20 |
Full Text Views | 36 | 36 | 0 |
PDF Views & Downloads | 69 | 69 | 0 |