Rapid urbanization exerts novel adaptive pressures on animals at the interface of natural and altered environments. Urban animals often rely on synthetic foods that require skilled extraction and flexible processing. We studied how synthetic treatment of an embedded food, peanut, determined its extraction and processing across groups of bonnet macaques (Macaca radiata) differing in encounter and familiarity with peanut. The possibility of the application of processing methods to similar foods was also tested. We found encounter- and form (native/shelled/skinned)-specific familiarity to peanuts, state (raw/boiled/roasted)-specific distinction in skinning, and encounter- and state-specific differences in methods of skinning. The group with the highest encounter with peanuts exhibited novel and manipulatively complex processing. Novel processing was also extended to peas and chickpeas. Our study establishes a strong relationship between familiarity with the condition of food and the processing methods used and further, demonstrates the probable role of categorization in extension of novel methods.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Allritz, M., Tennie, C. & Call, J. (2013). Food washing and placer mining in captive great apes. — Primates 54: 361-370.
Altmann, J. & Muruthi, P. (1988). Differences in daily life between semiprovisioned and wild-feeding baboons. — Am. J. Primatol. 15: 213-221.
Amici, F., Caicoya, A., Majolo, B. & Widdig, A. (2020). Innovation in wild Barbary macaques (Macaca sylvanus). — Sci. Rep. 10: 4597.
Anderson, B., Mruczek, R.E.B., Kawasaki, K. & Sheinberg, D. (2008). Effects of familiarity on neural activity in monkey inferior temporal lobe. — Cereb. Cortex 18: 2540-2552.
Barrett, L.P., Stanton, L.A. & Benson-Amram, S. (2019). The cognition of ‘nuisance’ species. — Anim. Behav. 147: 167-177.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. — J. Stat. Softw. 67: 1-48.
Becker, D.J. & Hall, R.J. (2014). Too much of a good thing: resource provisioning alters infectious disease dynamics in wildlife. — Biol. Lett. 10: 20140309.
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Mächler, M. & Bolker, B.M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. — R J. 9: 378-400.
Burnham, K.P. & Anderson, D.R. (2002). Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. — Springer, New York, NY.
Calle, L. & Gawlik, D.E. (2011). Anthropogenic food in the diet of the Sacred Ibis (Threskiornis aethiopicus), a non-native wading bird in southeastern FL, USA. — Fla. Field Nat. 39: 1-15.
Canteloup, C., Hoppitt, W. & van de Waal, E. (2020). Wild primates copy higher-ranked individuals in a social transmission experiment. — Nature Commun. 11: 459.
Canteloup, C., Cera, M.B., Barrett, B.J. & van de Waal, E. (2021). Processing of novel food reveals payoff and rank-biased social learning in a wild primate. — Sci. Rep. 11: 9550.
Case, T.I., Stevenson, R.J., Byrne, R.W. & Hobaiter, C. (2020). The animal origins of disgust: reports of basic disgust in nonhuman great apes. — Evol. Behav. Sci. 14: 231-260.
Comas-Cufí, M. & Thió-Henestrosa, S. (2011). CoDaPack 2.0: a stand-alone, multi-platform compositional software. — In: CoDaWork’11: 4th international workshop on compositional data analysis. (Egozcue, J.J., Tolosana-Delgado, R. & Ortego, M.I., eds). Sant Feliu de Guíxols. Available online at http://ima.udg.edu/codapack/.
Crast, J., Hardy, J.M. & Fragaszy, D. (2010). Inducing traditions in captive capuchin monkeys (Cebus apella). — Anim. Behav. 80: 955-964.
Dar, P. & Reshi, Z. (2014). Components, processes and consequences of biotic homogenization: a review. — Contemp. Probl. Ecol. 7: 123-136.
Das, S., Harpalani, M., Chaudhuri, B., Negi, R., Ali, S.T. & Singh, M. (2020). Use of an embedded fruit by the nicobar long-tailed macaque (Macaca fascicularis umbrosus): I. Familiarity to coconuts (Cocos nucifera L.) and temporal patterns of coconut foraging. — Primate Conserv. 34: 195-216.
Deng, H. & Zhou, J. (2016). “Juggling” behavior in wild Hainan gibbons, a new finding in nonhuman primates. — Sci. Rep. 6: 23566.
Deshpande, A., Gupta, S. & Sinha, A. (2018). Intentional communication between wild Bonnet macaques and humans. — Sci. Rep. 8: 5147.
Dunn, P.K. & Smyth, G.K. (1996). Randomized quantile residuals. — J. Comput. Graph. Stat. 5: 236-244.
Else, J.G. (1991). Nonhuman primates as pests. — In: Primate responses to environmental change. (Box, H.O., ed.). Springer, Dordrecht, p. 155-165.
Erinjery, J.J., Kumar, S., Kumara, H.N., Mohan, K., Dhananjaya, T., Sundararaj, P., Kent, R. & Singh, M. (2017). Losing its ground: a case study of fast declining populations of a ‘least-concern’ species, the Bonnet macaque (Macaca radiata). — PLoS ONE 12: e0182140.
Farrar, B.G. & Ostojić, L. (2021). It’s not just the animals that are STRANGE. — Learn. Behav. 49: 169-170.
Fiore, A.M., Cronin, K.A., Ross, S.R. & Hopper, L.M. (2020). Food cleaning by Japanese macaques: innate, innovative or cultural?. — Folia Primatol. 91: 433-444.
Forss, S.I.F., Schuppli, C., Haiden, D., Zweifel, N. & van Schaik, C.P. (2015). Contrasting responses to novelty by wild and captive orangutans. — Am. J. Primatol. 77: 1109-1121.
Francis, R.A. & Chadwick, M.A. (2012). What makes a species synurbic?. — Appl. Geogr. 32: 514-521.
Fuentes, A. (2012). Ethnoprimatology and the anthropology of the human-primate interface. — Annu. Rev. Anthropol. 41: 101-117.
Gelman, A. & Hill, J. (2007). Data analysis using regression and multilevel/hierarchical models. — Cambridge University Press, Cambridge.
Greenacre, M. (2016). Compositional data analysis in practice, 1st edn. — Routledge, London.
Grueter, C.C., Robbins, M.M., Ndagijimana, F. & Stoinski, T.S. (2013). Possible tool use in a mountain gorilla. — Behav. Process. 100: 160-162.
Gumert, M.D. & Malaivijitnond, S. (2012). Marine prey processed with stone tools by Burmese long-tailed macaques (Macaca fascicularis aurea) in intertidal habitats. — Am. J. Phys. Anthropol. 149: 447-457.
Hartig, F. (2021). DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. — R Package version 0.4.3. R Foundation for Statistical Comptuing, Vienna.
Heldstab, S.A., Isler, K., Schuppli, C. & van Schaik, C.P. (2020). When ontogeny recapitulates phylogeny: fixed neurodevelopmental sequence of manipulative skills among primates. — Sci. Adv. 6: eabb4685.
Heldstab, S.A., Kosonen, Z.K., Koski, S.E., Burkart, J.M., van Schaik, C.P. & Isler, K. (2016). Manipulation complexity in primates coevolved with brain size and terrestriality. — Sci. Rep. 6: 24528.
Hill, C.M. (2018). Crop foraging, crop losses, and crop raiding. — Annu. Rev. Anthropol. 47: 377-394.
Hirata, S., Myowa, M. & Matsuzawa, T. (1998). Use of leaves as cushions to sit on wet ground by wild chimpanzees. — Am. J. Primatol. 44: 215-220.
Hirata, S., Watanabe, K. & Masao, K. (2001). “Sweet-potato washing” revisited. — In: Primate origins of human cognition and behavior (Matsuzawa, T., ed.). Springer Japan, Tokyo, p. 487-508.
Hoppitt, W. & Laland, K.N. (2013). Social learning: an introduction to mechanisms, methods, and models. — Princeton University Press, Princeton, NJ.
Inoue-Nakamura, N. & Matsuzawa, T. (1997). Development of stone tool use by wild chimpanzees (Pan troglodytes). — J. Comp. Psychol. 111: 159-173.
Johnson, E. (2000). Food-neophobia in semi-free ranging rhesus macaques: effects of food limitation and food source. — Am. J. Primatol. 50: 25-35.
Kaplan, B.S., O’Riain, M.J., van Eeden, M.R. & King, M.A.J. (2011). A low-cost manipulation of food resources reduces spatial overlap between baboons (Papio ursinus) and humans in conflict. — Int. J. Primatol. 32: 1397-1412.
Kendal, R., Hopper, L.M., Whiten, A., Brosnan, S.F., Lambeth, S.P., Schapiro, S.J. & Hoppitt, W. (2015). Chimpanzees copy dominant and knowledgeable individuals: implications for cultural diversity. — J. Hum. Behav. Evol. Soc. 36: 65-72.
Kinani, J.-F. & Zimmerman, D. (2015). Tool use for food acquisition in a wild mountain gorilla (Gorilla beringei beringei). — Am. J. Primatol. 77: 353-357.
Koo, T.K. & Li, M.Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. — J. Chiropr. Med. 15: 155-163.
Kummer, H. & Goodall, J. (1985). Conditions of innovative behaviour in primates. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 308: 203-214.
Laudenslager, M.L., Natvig, C., Cantwell, H., Neville, M.C. & Reite, M.L. (2010). Estimates of milk constituents from lactating Bonnet macaque (Macaca radiata) mothers between two and seven months postpartum. — J. Med. Primatol. 39: 368-373.
Lea, S.E.G., Chow, P.K.Y., Leaver, L.A. & McLaren, I.P.L. (2020). Behavioral flexibility: a review, a model, and some exploratory tests. — Learn. Behav. 48: 173-187.
Leca, J.-B., Gunst, N., Watanabe, K. & Huffman, M.A. (2007). A new case of fish-eating in Japanese macaques: implications for social constraints on the diffusion of feeding innovation. — Am. J. Primatol. 69: 821-828.
Luncz, L.V. & Boesch, C. (2014). Tradition over trend: neighboring chimpanzee communities maintain differences in cultural behavior despite frequent immigration of adult females. — Am. J. Primatol. 76: 649-657.
Luniak, M. (2004). Synurbization-adaptation of animal wildlife to urban development. — In: Proceedings of the 4th international urban wildlife symposium University of Arizona, Tucson, AZ, p. 50-55.
Mangalam, M. & Singh, M. (2013). Flexibility in food extraction techniques in urban free-ranging Bonnet macaques, Macaca radiata. — PLoS ONE 8: e85497.
Marty, P.R., Balasubramaniam, K.N., Kaburu, S.S.K., Hubbard, J., Beisner, B., Bliss-Moreau, E., Ruppert, N., Arlet, M.E., Sah, S.A.M., Ismail, A., Mohan, L., Rattan, S.K., Kodandaramaiah, U. & McCowan, B. (2020). Individuals in urban dwelling primate species face unequal benefits associated with living in an anthropogenic environment. — Primates 61: 249-255.
McGrew, W.C. (2017). Grooming hand clasp. — In: International encyclopedia of primatology, 1st edn. Wiley-Blackwell, New York, NY, p. 1-3.
McKinney, M.L. (2006). Urbanization as a major cause of biotic homogenization. — Biol. Conserv. 127: 247-260.
McKinney, T. (2015). A classification system for describing anthropogenic influence on nonhuman primate populations. — Am. J. Primatol. 77: 715-726.
Neadle, D., Allritz, M. & Tennie, C. (2017). Food cleaning in gorillas: social learning is a possibility but not a necessity. — PLoS ONE 12: e0188866.
Neadle, D., Bandini, E. & Tennie, C. (2020). Testing the individual and social learning abilities of task-naïve captive chimpanzees (Pan troglodytes sp.) in a nut-cracking task. — PeerJ 8: e8734.
Newsome, T.M., Dellinger, J.A., Pavey, C.R., Ripple, W.J., Shores, C.R., Wirsing, A.J. & Dickman, C.R. (2015). The ecological effects of providing resource subsidies to predators. — Glob. Ecol. Biogeogr. 24: 1-11.
Nishida, T., Matsusaka, T. & McGrew, W.C. (2009). Emergence, propagation or disappearance of novel behavioral patterns in the habituated chimpanzees of Mahale: a review. — Primates 50: 23-36.
Oro, D., Genovart, M., Tavecchia, G., Fowler, M.S. & Martínez-Abraín, A. (2013). Ecological and evolutionary implications of food subsidies from humans. — Ecol. Lett. 16: 1501-1514.
Osterback, A.-M.K., Frechette, D.M., Hayes, S.A., Shaffer, S.A. & Moore, J.W. (2015). Long-term shifts in anthropogenic subsidies to gulls and implications for an imperiled fish. — Biol. Conserv. 191: 606-613.
Pal, A., Kumara, H.N., Mishra, P.S., Velankar, A.D. & Singh, M. (2018). Extractive foraging and tool-aided behaviors in the wild Nicobar long-tailed macaque (Macaca fascicularis umbrosus). — Primates 59: 173-183.
Plaza, P.I. & Lambertucci, S.A. (2017). How are garbage dumps impacting vertebrate demography, health, and conservation? — Glob. Ecol. Conserv. 12: 9-20.
Priston, N. & McLennan, M. (2013). Managing humans, managing macaques: human-macaque conflict in Asia and Africa. — In: The macaque connection: cooperation and conflict between humans and macaques (Radhakrishna, S., Huffman, M.A. & Sinha, A., eds). Springer, Berlin, p. 225-250.
Rakison, D.H. & Oakes, L.M. (2009). Early category and concept development. — Oxford University Press, Oxford.
Ram, S. & Sinha, A. (1999). Behavioural strategies of Wild bonnet macaques during natural foraging and provisioning, NIAS Report No. R1-99. National Institute of Advanced Studies, Bangalore, p. 38.
Ramsey, G., Bastian, M.L. & van Schaik, C. (2007). Animal innovation defined and operationalized. — Behav. Brain Sci. 30: 393-432.
Reader, S. & Laland, K. (2003). Animal innovation: an introduction. — Oxford University Press, Oxford.
Reader, S.M., Morand-Ferron, J. & Flynn, E. (2016). Animal and human innovation: novel problems and novel solutions. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 371: 20150182.
Reindl, E., Bandini, E. & Tennie, C. (2018). The zone of latent solutions and its relation to the classics: Vygotsky and Köhler. — In: Social cognition in non-human primates and early Homo (Di Paolo, L.D. & Vincenzo, F.D., eds). Springer International, Cham, p. 231-248.
Roonwol, M.L. & Mohnot, S.M. (1977). Primates of south Asia. — Harvard University Press, Cambridge, MA.
RStudio Team (2021). RStudio: integrated development for R. — RStudio, Boston, MA.
Schnoell, A.V. & Fichtel, C. (2013). A novel feeding behaviour in wild redfronted lemurs (Eulemur rufifrons): depletion of spider nests. — J. Primatol. 54: 371-375.
Seger, C.A. & Peterson, E.J. (2013). Categorization = decision making + generalization. — Neurosci. Biobehav. Rev. 37: 1187-1200.
Sha, J.C.M. & Hanya, G. (2013). Diet, activity, habitat use, and ranging of two neighboring groups of food-enhanced long-tailed macaques (Macaca fascicularis). — Am. J. Primatol. 75: 581-592.
Sha, J.C.M., Gumert, M.D., Lee, B.P.Y.-H., Jones-Engel, L., Chan, S. & Fuentes, A. (2009). Macaque-human interactions and the societal perceptions of macaques in Singapore. — Am. J. Primatol. 71: 825-839.
Shanmughanandam, P. (2019). Caught between two worlds. — Pollachi Papyrus, available online at https://thepapyrus.in/index.php/caught-between-two-worlds/.
Singh, M. (2019). Management of forest-dwelling and urban species: case studies of the lion-tailed macaque (Macaca silenus) and the Bonnet macaque (M. radiata). — Int. J. Primatol. 40: 613-629.
Sinha, A. (2001). The monkey in the town’s commons: A natural history of the Indian bonnet macaque. — NIAS Report R2-2001. National Institute of Advanced Studies, Bangalore, p. 41.
Suzuki, A. (1965). An ecological study of wild Japanese monkeys in snowy areas. — Primates 6: 31-72.
Tamura, M. (2020). Extractive foraging on hard-shelled walnuts and variation of feeding techniques in wild Japanese macaques (Macaca fuscata). — Am. J. Primatol. 82: e23130.
Tennie, C., Call, J. & Tomasello, M. (2009). Ratcheting up the ratchet: on the evolution of cumulative culture. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 364: 2405-2415.
Truppa, V., Marino, L.A., Izar, P., Fragaszy, D.M. & Visalberghi, E. (2019). Manual skills for processing plant underground storage organs by wild bearded capuchins. — Am. J. Phys. Anthropol. 170: 48-64.
Tuomainen, U. & Candolin, U. (2011). Behavioural responses to human-induced environmental change. — Biol. Rev. 86: 640-657.
Urbani, B. (2001). Food-washing among wedge-capped capuchin monkeys (Cebus olivaceus). — Hum. Evol. 16: 225-228.
Vale, G.L., Davis, S.J., Lambeth, S.P., Schapiro, S.J. & Whiten, A. (2017). Acquisition of a socially learned tool use sequence in chimpanzees: implications for cumulative culture. — Evol. Hum. Behav. 38: 635-644.
van de Waal, E., Krützen, M., Hula, J., Goudet, J. & Bshary, R. (2012). Similarity in food cleaning techniques within matrilines in wild vervet monkeys. — PLoS ONE 7: e35694.
van Leeuwen, E.J.C., Cronin, K.A., Haun, D.B.M., Mundry, R. & Bodamer, M.D. (2012). Neighbouring chimpanzee communities show different preferences in social grooming behaviour. — Proc. Roy. Soc. Lond. B: Biol. Sci. 279: 4362-4367.
Van Schaik, C., Deaner, R.O. & Merrill, M.Y. (1999). The conditions for tool use in primates: implications for the evolution of material culture. — J. Hum. Evol. 36: 719-741.
Visalberghi, E. & Fragaszy, D.M. (1990). Food-washing behaviour in tufted capuchin monkeys, Cebus apella, and crabeating macaques, Macaca fascicularis. — Anim. Behav. 40: 829-836.
Wanget, S.A., Morales-Corts, M.R., Pérez-Sánchez, R., Rostini, N., Gómez-Sánchez, M.Á. & Karuniawan, A. (2019). Agro-morphological and chemical characterization of traditional Indonesian peanut (Arachis hypogaea L.) cultivars. — Genetika 51: 179-198.
Webster, M.M. & Rutz, C. (2020). How STRANGE are your study animals?. — Nature 582: 337-340.
Wheatley, B.P. (1988). Cultural behavior and extractive foraging in Macaca fascicularis. — Curr. Anthropol. 29: 516-519.
Wolfe, L.D. (1992). Feeding habits of the rhesus monkeys (Macaca mulatta) of Jaipur and Galta, India. — Hum. Evol. 7: 43-54.
Wolfe, L.D. (2002). Rhesus macaques: a comparative study of two sites, Jaipur, India, and Silver Springs, Florida. — Cambridge Stud. Biol. Evol. Anthropol. 29: 310-330.
Wood, J.A., Knights, E.J. & Choct, M. (2011). Morphology of chickpea seeds (Cicer arietinum L.): comparison of desi and kabuli types. — Int. J. Plant Sci. 172: 632-643.
Yu, J., Ahmedna, M. & Goktepe, I. (2005). Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics. — Food Chem. 90: 199-206.
Zhao, T., Su, W., Qin, Y., Wang, L. & Kang, Y. (2020). Phenotypic diversity of pea (Pisum sativum L.) varieties and the polyphenols, flavonoids, and antioxidant activity of their seeds. — Ciênc. Rural 50. DOI:10.1590/0103-8478cr20190196.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 455 | 111 | 7 |
Full Text Views | 29 | 14 | 1 |
PDF Views & Downloads | 48 | 28 | 3 |
Rapid urbanization exerts novel adaptive pressures on animals at the interface of natural and altered environments. Urban animals often rely on synthetic foods that require skilled extraction and flexible processing. We studied how synthetic treatment of an embedded food, peanut, determined its extraction and processing across groups of bonnet macaques (Macaca radiata) differing in encounter and familiarity with peanut. The possibility of the application of processing methods to similar foods was also tested. We found encounter- and form (native/shelled/skinned)-specific familiarity to peanuts, state (raw/boiled/roasted)-specific distinction in skinning, and encounter- and state-specific differences in methods of skinning. The group with the highest encounter with peanuts exhibited novel and manipulatively complex processing. Novel processing was also extended to peas and chickpeas. Our study establishes a strong relationship between familiarity with the condition of food and the processing methods used and further, demonstrates the probable role of categorization in extension of novel methods.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 455 | 111 | 7 |
Full Text Views | 29 | 14 | 1 |
PDF Views & Downloads | 48 | 28 | 3 |