Sexual conflict over mating may induce male mate-guarding prolonged in time in the absence of males, via devices such as mating plugs, widespread in insects. In most Lepidoptera, internal plugs are common, while in some butterfly families large external devices, called sphragides, evolved independently. Lack of, or incomplete sphragis in a few individuals were reported in sphragis-bearing species. Previous studies focused on typifying species-specific devices in a few specimens of many species. In contrast, we investigated alternative mate-guarding devices in detail of a sphragis-bearing butterfly. We conducted a six-year observational field study in a Clouded Apollo Parnassius mnemosyne population. Inspecting 492 females, we identified 3 different devices, filament, stopple and shield (i.e., sphragis) increasing in size and structure complexity, implying differential male investment and effectiveness in securing paternity. Shield dimensions, colour and all devices’ shapes varied considerably. Shields were far more frequent than other devices. Some devices were lost, and a few were video-recorded when removed by males, showing the role of different parts of male external genitalia. We discuss potential causes of device variation and the role of removal attempts, and assess potential costs and benefits for both sexes.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Alberts, S.C., Altmann, J. & Wilson, M.L. (1996). Mate guarding constrains foraging activity of male baboons. — Anim. Behav. 51: 1269-1277. DOI:10.1006/anbe.1996.0131.
Alcock, J. (1994). Postinsemination associations between males and females in insects: the mate-guarding hypothesis. — Annu. Rev. Entomol. 39: 1-21. DOI:10.1146/annurev.ento.39.1.1.
Arnqvist, G. & Rowe, L. (2002). Antagonistic coevolution between the sexes in a group of insects. — Nature 415: 787-789. DOI:10.1038/415787a.
Auckland, J.N., Debinski, D.M. & Clark, W.R. (2004). Survival, movement, and resource use of the butterfly Parnassius clodius. — Ecol. Entomol. 29: 139-149. DOI:10.1111/j.0307-6946.2004.00581.x.
Bella, M. (2017). Seasonal sex ratio dynamics in Clouded Apollo butterflies. — BSc thesis, University of Veterinary Medicine Budapest, Budapest (in Hungarian).
Benvenuto, C. & Weeks, S.C. (2012). Intersexual conflict during mate guarding in an androdioecious crustacean. — Behav. Ecol. 23: 218-224. DOI:10.1093/beheco/arr178.
Bergström, A. (2005). Oviposition site preferences of the threatened butterfly Parnassius mnemosyne — implications for conservation. — J. Insect Conserv. 9: 21-27. DOI:10.1007/s10841-004-3204-4.
Boggs, C.L. & Watt, W.B. (1981). Population structure of pierid butterflies IV. Genetic and physiological investment in offspring by male Colias. — Oecologia 50: 320-324. DOI:10.1007/BF00344970.
Calabrese, J.M., Ries, L., Matter, S.F., Debinski, D.M., Auckland, J.N., Roland, J. & Fagan, W.F. (2008). Reproductive asynchrony in natural butterfly populations and its consequences for female matelessness. — J. Anim. Ecol. 77: 746-756. DOI:10.1111/j.1365-2656.2008.01385.x.
Canales-Lazcano, J., Contreras-Garduño, J. & Cordero, C. (2019). Strategic adjustment of copulatory plug size in a nematode. — Curr. Zool. 65: 571-577. DOI:10.1093/cz/zoy067.
Carvalho, A.P.S., Mota, L.L. & Kawahara, A.Y. (2019). Intersexual ‘arms race’ and the evolution of the sphragis in Pteronymia butterflies. — Insect Syst. Div. 3: 3. DOI:10.1093/isd/ixy021.
Carvalho, A.P.S., Orr, A.G. & Kawahara, A.Y. (2017). A review of the occurrence and diversity of the sphragis in butterflies (Lepidoptera, Papilionoidea). — ZooKeys 694: 41-70. DOI:10.3897/zookeys.694.13097.
Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. (2003). Sexual conflict. — Trends Ecol. Evol. 18: 41-47. DOI:10.1016/S0169-5347(02)00004-6.
Churkin, S. (2006). A new species of Parnassius Latreille, 1804, from Kyrgyzstan (Lepidoptera, Papilionidae). — Helios 7: 142-158.
Clarke, C.A. & Sheppard, P.M. (1962). Offspring from double matings in swallowtail butterflies. — Entomologist 95: 199-203.
Condamine, F.L., Rolland, J., Höhna, S., Sperling, F.A.H. & Sanmartín, I. (2018). Testing the role of the Red Queen and Court Jester as drivers of the macroevolution of Apollo butterflies. — Syst. Biol. 67: 940-964. DOI:10.1093/sysbio/syy009.
Danchin, E.G.J., Giraldeau, L.-A. & Cézilly, F. (2008). Behavioural ecology. — Oxford University Press, Oxford.
Danzy, J., Gutierrez, V., Pampush, J. & Campbell, B. (2009). Factors affecting the distribution of copulatory plugs in rhesus monkeys (Macaca mulatta) on Cayo Santiago. — Folia Primatol. 80: 264-274. DOI:10.1159/000252585.
Dickinson, J.L. & Rutowski, R.L. (1989). The function of the mating plug in the chalcedon checkerspot butterfly. — Anim. Behav. 38: 154-162. DOI:10.1016/S0003-3472(89)80074-0.
Dixson, A.F. & Anderson, M.J. (2002). Sexual selection, seminal coagulation and copulatory plug formation in primates. — Folia Primatol. 73: 63-69. DOI:10.1159/000064784.
Dougherty, L.R. & Simmons, L.W. (2017). X-ray micro-CT scanning reveals temporal separation of male harm and female kicking during traumatic mating in seed beetles. — Proc. Roy. Soc. Lond. B: Biol. Sci. 284: 20170550. DOI:10.1098/rspb.2017.0550.
Drummond, B.A. (1984). Multiple mating and sperm competition in the Lepidoptera. — In: Sperm competition and the evolution of animal mating systems (Smith, R.L., ed.). Academic Press, San Diego, CA, p. 291-360. DOI:10.1016/b978-0-12-652570-0.50016-6.
Dunham, A.E. & Rudolf, V.H.W. (2009). Evolution of sexual size monomorphism: the influence of passive mate guarding. — J. Evol. Biol. 22: 1376-1386. DOI:10.1111/j.1420-9101.2009.01768.x.
Edward, D.A. (2015). The description of mate choice. — Behav. Ecol. 26: 301-310. DOI:10.1093/beheco/aru142.
Eens, M. & Pinxten, R. (1995). Inter-sexual conflicts over copulations in the European starling: evidence for the female mate-guarding hypothesis. — Behav. Ecol. Sociobiol. 36: 71-81. DOI:10.1007/BF00170711.
Eltringham, H. (1925). III. On the source of the sphragidal fluid in Parnassius apollo (Lepidoptera). — Trans. Roy. Entomol. Soc. Lond. 73: 11-15. DOI:10.1111/J.1365-2311.1925.TB02859.X.
Fric, Z., Klimova, M. & Konvička, M. (2006). Mechanical design indicates differences in mobility among butterfly generations. — Evol. Ecol. Res. 8: 1511-1522.
Honěk, A. (1993). Intraspecific variation in body size and fecundity in insects: a general relationship. — Oikos 66: 483-492. DOI:10.2307/3544943.
Hothorn, T., Bretz, F. & Westfall, P. (2008). Simultaneous inference in general parametric models. — Biom. J. 50: 346-363.
Jennions, M.D. & Petrie, M. (2000). Why do females mate multiply? A review of the genetic benefits. — Biol. Rev. 75: 21-64. DOI:10.1111/j.1469-185X.1999.tb00040.x.
Jormalainen, V. (1998). Precopulatory mate guarding in crustaceans: male competitive strategy and intersexual conflict. — Q. Rev. Biol. 73: 275-304. DOI:10.1086/420306.
Kawagoe, T., Suzuki, N. & Matsumoto, K. (2001). Multiple mating reduces longevity of females of the windmill butterfly Atrophaneura alcinous. — Ecol. Entomol. 26: 258-262. DOI:10.1046/j.1365-2311.2001.00326.x.
King, B.H. & Fischer, C.R. (2005). Males mate guard in absentia through extended effects of postcopulatory courtship in the parasitoid wasp Spalangia endius (Hymenoptera: Pteromalidae). — J. Insect Physiol. 51: 1340-1345. DOI:10.1016/j.jinsphys.2005.08.004.
Konvička, M. & Kuras, T. (1999). Population structure, behaviour and selection of oviposition sites of an endangered butterfly, Parnassius mnemosyne, in Litovelske Pomoravi, Czech Republic. — J. Insect Conserv. 3: 211-223. DOI:10.1023/A:1009641618795.
Konvička, M., Duchoslav, M., Haraštová, M., Beneš, J., Foldynová, S., Jirk˚o, M. & Kuras, T. (2001). Habitat utilization and behaviour of adult Parnassius mnemosyne (Lepidoptera: Papilionidae) in the Litovelské Pomoraví, Czech Republic. — Nota Lepidopterol. 24: 39-51.
Labine, P.A. (1966). The population biology of the butterfly, Euphydryas editha. IV. Sperm precedence — a preliminary report. — Evolution 20: 580-586. DOI:10.2307/2406592.
Lehtonen, T.K., Svensson, P.A. & Wong, B.B.M. (2016). The influence of recent social experience and physical environment on courtship and male aggression evolutionary ecology and behaviour. — BMC Evol. Biol. 16: 18. DOI:10.1186/s12862-016-0584-5.
Lenth, R.V. (2016). Least-squares means: the R package lsmeans. — J. Stat. Softw. 69: 1-33. DOI:10.18637/JSS.V069.I01.
Marshall, G.A.K. (1901). On the female pouch in Acraea. — Entomologist 34: 73-75.
Martin, O.Y. & Hosken, D.J. (2003). The evolution of reproductive isolation through sexual conflict. — Nature 423: 979-982. DOI:10.1038/nature01752.
Matsumoto, K. (1987). Mating patterns of a sphragis-bearing butterfly, Luehdorfia japonica Leech (Lepidoptera: Papilionidae), with descriptions of mating behavior. — Popul. Ecol. 29: 97-110. DOI:10.1007/BF02515428.
Matsumoto, K., Orr, A.G. & Yago, M. (2018). The occurrence and function of the sphragis in the Zerynthiine genera Zerynthia, Allancastria and Bhutanitis (Lepidoptera: Papilionoidea: Papilionidae). — J. Nat. Hist. 52: 1351-1376. DOI:10.1080/00222933.2018.1464228.
Matsumoto, K. & Suzuki, N. (1992). Effectiveness of the mating plug in Atrophaneura alcinous (Lepidoptera: Papilionidae). — Behav. Ecol. Sociobiol. 30: 157-163. DOI:10.1007/BF00166698.
Matsumoto, K. & Suzuki, N. (1995). The nature of mating plugs and the probability of reinsemination in Japanese Papilionidae. — In: Swallowtail butterflies: their ecology and evolutionary biology (Scriber, J.M., Tsubaki, Y. & Lederhouse, R.C., eds). Scientific Publishers, Gainesville, FL, p. 145-154.
Matter, S.F., Reed, B., Illerbrun, K., Doyle, A., McPike, S. & Roland, J. (2012). Young love? Mating of Parnassius smintheus Doubleday (Papilionidae). — J. Lepid. Soc. 66: 111-113. DOI:10.18473/lepi.v66i2.a4.
McCorkle, D.V. & Hammond, P.C. (1985). Observations on the biology of Parnassius clodius (Papilionidae) in the Pacific Northwest. — J. Lepid. Soc. 39: 156-162.
Meglécz, E., Nève, G., Pecsenye, K. & Varga, Z. (1999). Genetic variations in space and time in Parnassius mnemosyne (L.) (Lepidoptera) populations in north-east Hungary: implications for conservation. — Biol. Conserv. 89: 251-259. DOI:10.1016/S0006-3207(99)00006-3.
Meier, K., Kuusemets, V., Luig, J. & Mander, Ü. (2005). Riparian buffer zones as elements of ecological networks: case study on Parnassius mnemosyne distribution in Estonia. — Ecol. Eng. 24: 531-537. DOI:10.1016/j.ecoleng.2005.01.017.
Nilakhe, S.S. (1977). Longevity and fecundity of female boll weevils placed with varying numbers of males. — Ann. Entomol. Soc. Am. 70: 673-674. DOI:10.1093/AESA/70.5.673.
Okada, K., Katsuki, M., Sharma, M.D., Kiyose, K., Seko, T., Okada, Y., Wilson, A.J. & Hosken, D.J. (2021). Natural selection increases female fitness by reversing the exaggeration of a male sexually selected trait. — Nature Commun. 12: 3420. DOI:10.1038/s41467-021-23804-7.
Orr, A.G. (1988). Mate conflict and the evolution of the sphragis in butterflies. — PhD thesis, School of Australian Environmental Studies, Griffith University, Gold Coast, QLD.
Orr, A.G. (1995). The evolution of the sphragis in the Papilionidae and other butterflies. — In: Swallowtail butterflies: their ecology and evolutionary biology (Scriber, J.M., Tsubaki, Y. & Lederhouse, R.C., eds). Scientific Publishers, Gainesville, FL, p. 155-164.
Orr, A.G. (1999). The big greasy, Cressida cressida (Papilionidae). — In: Monographs on Australian Lepidoptera, biology of Australian butterflies Vol. 6 (Kitching, R.L., Scheermeyer, E., Jones, R.E. & Pierce, N.E., eds). CSIRO Publishing, Canberra, ACT, p. 115-134.
Orr, A.G. (2002). The sphragis of Heteronympha penelope Waterhouse (Lepidoptera: Satyridae): its structure, formation and role in sperm guarding. — J. Nat. Hist. 36: 185-196. DOI:10.1080/00222930010022926.
Orr, A.G. & Rutowski, R.L. (1991). The function of the sphragis in Cressida cressida (Fab.) (Lepidoptera, Papilionidae): a visual deterrent to copulation attempts. — J. Nat. Hist. 25: 703-710. DOI:10.1080/00222939100770461.
Parker, G.A. (1970). The reproductive behaviour and the nature of sexual selection in Scatophaga stercoraria L. (Diptera: Scatophagidae). IV. Epigamic recognition and competition between males for the possession of females. — Behaviour 37: 113-139. DOI:10.1163/156853970X00268.
Parker, G.A. (1974). Assessment strategy and the evolution of fighting behaviour. — J. Theor. Biol. 47: 223-243. DOI:10.1016/0022-5193(74)90111-8.
Parker, G.A. (1979). Sexual selection and sexual conflict. — In: Sexual selection and reproductive competition in insects (Blum, M.S. & Blum, N.A., eds). Academic Press, San Diego, CA, p. 123-166. DOI:10.1016/b978-0-12-108750-0.50010-0.
Parker, G.A. (2006). Sexual conflict over mating and fertilization: an overview. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 361: 235-259. DOI:10.1098/rstb.2005.1785.
Partridge, L. & Hurst, L.D. (1998). Sex and conflict. — Science 281: 2003-2008. DOI:10.1126/science.281.5385.2003.
Pásztor, K., Kőrösi, Á., Gór, Á., Szigeti, V., Vajna, F. & Kis, J. (2022). Phenotypic senescence in a natural insect population. — Ecol. Evol. 12: e9668. DOI:10.1002/ece3.9668.
Petersen, W. (1929). Über die sphragis und das spermatophragma der tagfaltergattung Parnassius (Lep.). — Berliner Entomol. Z. 5: 407-413. DOI:10.1002/MMND.192919280506.
Peterson, B.G., Carl, P., Boudt, K., Hung, E., Lestel, M., Balkissoon, K., Wuertz, D., Christidis, A.A., Martin, R.D., Zhou, Z., Shea, J.M., Bennett, R., Ulrich, J., Zivot, E. & Cornilly, D. (2020). PerformanceAnalytics: econometric tools for performance and risk analysis. — R Foundation for Statistical Computing, Vienna, available online at https://cran.r-project.org/web/packages/PerformanceAnalytics/PerformanceAnalytics.pdf.
Petrie, M. (1992). Copulation frequency in birds: why do females copulate more than once with the same male? — Anim. Behav. 44: 790-792. DOI:10.1016/S0003-3472(05)80309-4.
Pierre, J. (1985). Le sphragis chez les Acraeinae (Lepidoptera: Nymphalidae) [The sphragis in the Acraeinae (Lepidoptera: Nymphalidae)]. — Ann. Soc. Entomol. Fr. 21: 393-398.
R Core Team (2022). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna, available online at https://www.R-project.org/.
Reinhardt, K., Naylor, R. & Siva-Jothy, M.T. (2003). Reducing a cost of traumatic insemination: female bedbugs evolve a unique organ. — Proc. Roy. Soc. Lond. B: Biol. Sci. 270: 2371-2375. DOI:10.1098/rspb.2003.2515.
Ronkay, L. (1997). Nemzeti biodiverzitás monitorozó rendszer VII. — Lepkék, Budapest.
Rönn, J., Katvala, M. & Arnqvist, G. (2007). Coevolution between harmful male genitalia and female resistance in seed beetles. — Proc. Natl. Acad. Sci. USA 104: 10921-10925. DOI:10.1073/pnas.0701170104.
Rowe, L. (1992). Convenience polyandry in a water strider: foraging conflicts and female control of copulation frequency and guarding duration. — Anim. Behav. 44: 189-202. DOI:10.1016/0003-3472(92)90025-5.
Saigusa, T. (1973). A phylogeny of the genus Luehdorfia (I). — Konchu-to-Shizen 8: 5-18.
Sakaluk, S.K. (1991). Post-copulatory mate guarding in decorated crickets. — Anim. Behav. 41: 207-216. DOI:10.1016/S0003-3472(05)80472-5.
Schröder, T. (2003). Precopulatory mate guarding and mating behaviour in the rotifer Epiphanes senta (Monogononta: Rotifera). — Proc. Roy. Soc. Lond. B: Biol. Sci. 270: 1965-1970. DOI:10.1098/rspb.2003.2466.
Scoble, M.J. (1992). The Lepidoptera. Form, function and diversity. — Oxford University Press, Oxford.
Simmons, L.W. (2001). The evolution of polyandry: an examination of the genetic incompatibility and good-sperm hypotheses. — J. Evol. Biol. 14: 585-594. DOI:10.1046/j.1420-9101.2001.00309.x.
Simmons, L.W. (2002). Sperm competition and its evolutionary consequences in the insects. — Princeton University Press, Princeton, NJ.
Sims, S.R. (1979). Aspects of mating frequency and reproductive maturity in Papilio zelicaon. — Am. Midl. Nat. 102: 36-50. DOI:10.2307/2425064.
Stjernholm, F., Karlsson, B. & Boggs, C.L. (2005). Age-related changes in thoracic mass: possible reallocation of resources to reproduction in butterflies. — Biol. J. Linn. Soc. 86: 363-380. DOI:10.1111/J.1095-8312.2005.00542.X.
Stockley, P., Franco, C., Claydon, A.J., Davidson, A., Hammond, D.E., Brownridge, P.J., Hurst, J.L. & Beynon, R.J. (2020). Revealing mechanisms of mating plug function under sexual selection. — Proc. Natl. Acad. Sci. USA 117: 27465-27473. DOI:10.1073/pnas.1920526117.
Stutt, A.D. & Siva-Jothy, M.T. (2001). Traumatic insemination and sexual conflict in the bed bug Cimex lectularius. — Proc. Natl. Acad. Sci. USA 98: 5683-5687. DOI:10.1073/pnas.101440698.
Summers, S.L., Kawahara, A.Y. & Carvalho, A.P.S. (2020). Effects of the sphragis on male and female genitalia in Acraea (Nymphalidae) butterflies. — J. Undergrad. Res. 22. DOI:10.32473/ufjur.v22i0.121244.
Szigeti, V., Kőrösi, Á., Harnos, A., Nagy, J. & Kis, J. (2016). Comparing two methods for estimating floral resource availability for insect pollinators in semi-natural habitats. — Ann. Soc. Entomol. Fr. 52: 289-299. DOI:10.1080/00379271.2016.1261003.
Szigeti, V., Kőrösi, Á., Harnos, A. & Kis, J. (2018). Temporal changes in floral resource availability and flower visitation in a butterfly. — Arthropod-Plant Interact. 12: 177-189. DOI:10.1007/s11829-017-9585-6.
Szigeti, V., Vajna, F., Kőrösi, Á. & Kis, J. (2020). Are all butterflies equal? Population-wise proboscis length variation predicts flower choice in a butterfly. — Anim. Behav. 163: 135-143. DOI:10.1016/J.ANBEHAV.2020.03.008.
Thornhill, R. & Alcock, J. (1983). The evolution of insect mating systems. — Harvard University Press, Cambridge, MA.
Timmermeyer, N., Gerlach, T., Guempel, C., Knoche, J., Pfann, J.F., Schliessmann, D. & Michiels, N.K. (2010). The function of copulatory plugs in Caenorhabditis remanei: hints for female benefits. — Front. Zool. 7: 28. DOI:10.1186/1742-9994-7-28.
Tregenza, T. & Wedell, N. (2002). Polyandrous females avoid costs of inbreeding. — Nature 415: 71-73. DOI:10.1038/415071a.
Tregenza, T., Wedell, N. & Chapman, T. (2006). Introduction. Sexual conflict: a new paradigm? — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 361: 229-234. DOI:10.1098/rstb.2005.1796.
van Swaay, C., Cuttelod, A., Collins, S., Maes, D., López Munguira, M., Šašic, M., Settele, J., Verovnik, R., Verstrael, T., Warren, M., Wiemers, M. & Wynhoff, I. (2010). European red list of butterflies. — Publications Office of the European Union, Luxembourg.
Vlašánek, P. & Konvička, M. (2009). Sphragis in Parnassius mnemosyne (Lepidoptera: Papilionidae): male-derived insemination plugs loose efficiency with progress of female flight. — Biologia 64: 1206-1211. DOI:10.2478/s11756-009-0207-3.
Vojnits, A.M. & Ács, E. (2000). Biology and behaviour of a Hungarian population of Parnassius mnemosyne: (Linnaeus, 1758). — Oedippus 17: 1-24.
Weiss, J.C. (1999). The Parnassiinae of the world. Vol. 3. — Hillside Books, Hillside, NSW.
Zheng, B., Wang, Y., Xia, C., Huang, D., Cao, Y., Hao, J. & Zhu, C. (2018). The complete mitochondrial genome of Parnassius actius (Lepidoptera: Papilionidae: Parnassinae) with the related phylogenetic analysis. — Zool. Syst. 43: 1-17. DOI:10.11865/ZS.201801.
Zorkóczy, O.K. (2020). Az időjárás, a testméret és a túlélés kapcsolata kis Apolló-lepke imágóknál. MSc thesis, University of Veterinary Medicine Budapest, Budapest (in Hungarian).
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 417 | 139 | 21 |
Full Text Views | 177 | 10 | 2 |
PDF Views & Downloads | 269 | 17 | 0 |
Sexual conflict over mating may induce male mate-guarding prolonged in time in the absence of males, via devices such as mating plugs, widespread in insects. In most Lepidoptera, internal plugs are common, while in some butterfly families large external devices, called sphragides, evolved independently. Lack of, or incomplete sphragis in a few individuals were reported in sphragis-bearing species. Previous studies focused on typifying species-specific devices in a few specimens of many species. In contrast, we investigated alternative mate-guarding devices in detail of a sphragis-bearing butterfly. We conducted a six-year observational field study in a Clouded Apollo Parnassius mnemosyne population. Inspecting 492 females, we identified 3 different devices, filament, stopple and shield (i.e., sphragis) increasing in size and structure complexity, implying differential male investment and effectiveness in securing paternity. Shield dimensions, colour and all devices’ shapes varied considerably. Shields were far more frequent than other devices. Some devices were lost, and a few were video-recorded when removed by males, showing the role of different parts of male external genitalia. We discuss potential causes of device variation and the role of removal attempts, and assess potential costs and benefits for both sexes.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 417 | 139 | 21 |
Full Text Views | 177 | 10 | 2 |
PDF Views & Downloads | 269 | 17 | 0 |