Mobbing is a prevalent anti-predatory behaviour in birds where prey actively engage in harassing predators. Functional traits have been shown to affect prey species’ tendency to engage in mobbing, but empirical studies have largely neglected to assess the influence of some other potentially important functional traits, such as intraspecific and interspecific sociality, on mobbing or measured different aspects of the behaviour. In this study, we performed playback experiments that elicited mobbing responses from a forest bird community in southern China, to investigate the influence of body mass, foraging strata, as well as intra- and interspecific sociality, on the prevalence of mobbing, as well as the intensity of aggression and vocalness. We found that species with small body masses engaged in more frequent and intense mobbing behaviours. Notably, interspecific sociality was negatively associated with birds’ mobbing prevalence and tended to be negatively associated with vocalness.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Bai, J., Freeberg, T.M., Lucas, J.R. & Sieving, K.E. (2021). A community context for aggression? Multi-species audience effects on territorial aggression in two species of Paridae. — Ecol. Evol. 11: 5305-5319. DOI:10.1002/ece3.7421.
Barnes, C., Maxwell, D., Reuman, D.C. & Jennings, S. (2010). Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. — Ecology 91: 222-232. DOI:10.1890/08-2061.1.
Berzins, A., Krama, T., Krams, I., Freeberg, T.M., Kivleniece, I., Kullberg, C. & Rantala, M.J. (2010). Mobbing as a trade-off between safety and reproduction in a songbird. — Behav. Ecol. 21: 1054-1060. DOI:10.1093/beheco/arq104.
Carlson, N.V. & Griesser, M. (2021). Mobbing in animals: a thorough review and proposed future directions. — EcoEvoRxiv. DOI:10.1016/bs.asb.2022.01.003.
Chen, C.C. & Hsieh, H. (2002). Composition and foraging behaviour of mixed-species flocks led by the Grey-cheeked Fulvetta in Fushan Experimental Forest, Taiwan. — Ibis 144: 317-330. DOI:10.1046/j.1474-919X.2002.00020.x.
Consla, D.J., Mumme, R.L. & Foster, S. (2012). Response of captive raptors to avian mobbing calls: the roles of mobber size and raptor experience. — Ethology 118: 1063-1071. DOI:10.1111/eth.12007.
Contreras, T.A. & Sieving, K.E. (2011). Leadership of winter mixed-species flocks by Tufted Titmice (Baeolophus bicolor): are titmice passive nuclear species? — J. Zool.: 670548. DOI:10.1155/2011/670548.
Cunha, F.C.R., Fontenelle, J.C.R. & Griesser, M. (2017a). The presence of conspecific females influences male-mobbing behavior. — Behav. Ecol. Sociobiol. 71: 52. DOI:10.1007/s00265-017-2267-7.
Cunha, F.C.R., Fontenelle, J.C.R., Griesser, M. & Griffin, A. (2017b). Predation risk drives the expression of mobbing across bird species. — Behav. Ecol. 28: 1517-1523. DOI:10.1093/beheco/arx111.
Curio, E. (1978). The adaptive significance of avian mobbing. I. Teleonomic hypotheses and predictions. — Z. Tierpsychol. 48: 175-183. DOI:10.1111/j.1439-0310.1978.tb00254.x.
de Lima, H., Las-Casas, F., Ribeiro, J., Gonçalves-Souza, T. & Naka, L. (2018). Ecological and phylogenetic predictors of mobbing behavior in a tropical dry forest. — Ecol. Evol. 8: 12615-12628. DOI:10.1002/ece3.4683.
Dugatkin, L.A. & Godin, J.G.J. (1992). Prey approaching predators: a cost-benefit perspective. — Ann. Zool. Fenn. 29: 233-252.
Dutour, M., Lena, J.P. & Lengagne, T. (2016). Mobbing behaviour varies according to predator dangerousness and occurrence. — Anim. Behav. 119: 119-124. DOI:10.1016/j.anbehav.2016.06.024.
Dutour, M., Lena, J.P. & Lengagne, T. (2017a). Mobbing calls: a signal transcending species boundaries. — Anim. Behav. 131: 3-11. DOI:10.1016/j.anbehav.2017.07.004.
Dutour, M., Lena, J.P. & Lengagne, T. (2017b). Mobbing behaviour in a passerine community increases with prevalence in predator diet. — Ibis. 159: 324-330. DOI:10.1111/ibi.12461.
FitzGibbon, C.D. (1994). The costs and benefits of predator inspection behaviour in Thomson’s gazelles. — Behav. Ecol. Sociobiol. 34: 139-148. DOI:10.1007/BF00164184.
Flasskamp, A. (1994). The adaptive significance of avian mobbing V. An experimental test of the ‘move on’ hypothesis. — Ethology 96: 322-333. DOI:10.1111/j.1439-0310.1994.tb01020.x.
Fox, J., Friendly, G.G., Graves, S., Heiberger, R., Monette, G., Nilsson, H., Ripley, B., Weisberg, S., Fox, M.J. & Suggest, S.M.A.S. (2007). The car package. — R Foundation for Statistical Computing, Vienna.
Goodale, E. & Kotagama, S.W. (2005). Alarm calling in Sri Lankan mixed-species bird flocks. — Auk. 122: 108-120. DOI:10.1093/auk/122.1.108.
Goodale, E., Beauchamp, G., Magrath, R., Nieh, J.C. & Ruxton, G.D. (2010). Interspecific information transfer influences animal community structure. — Trends. Ecol. Evol. 25: 354-361. DOI:10.1016/j.tree.2010.01.002.
Goodale, E., Beauchamp, G. & Ruxton, G.D. (2017). Mixed-species animal groups: behavior, community structure and conservation. — Academic Press, London.
Griesser, M. & Ekman, J. (2005). Nepotistic mobbing behaviour in the Siberian jay, Perisoreus infaustus. — Anim. Behav. 69: 345-352. DOI:10.1016/j.anbehav.2004.05.013.
Gu, H., Chen, J., Ewing, H., Liu, X.H., Zhao, J.B. & Goodale, E. (2017). Heterospecific attraction to the vocalizations of birds in mass-fruiting trees. — Behav. Ecol. Sociobiol. 71: 82. DOI:10.1007/s00265-017-2312-6.
Hadfield, J.D. (2010). MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. — J. Stat. Softw. 33: 1-22. DOI:10.18637/jss.v033.i02.
Hua, F.Y., Yong, D.L., Janra, M.N., Fitri, L.M., Prawiradilaga, D. & Sieving, K. (2016). Functional traits determine heterospecific use of risk-related social information in forest birds of tropical South-East Asia. — Ecol. Evol. 6: 8485-8494. DOI:10.1002/ece3.2545.
Jiang, A.W. (2007). The study of understory birds in Nonggang karst forest. — MD thesis, Guangxi University, Nanning.
Jiang, D.M., Sieving, K.E., Meaux, E. & Goodale, E. (2020). Seasonal changes in mixed-species bird flocks and anti-predator information. — Ecol. Evol. 10: 5368-5382. DOI:10.1002/ece3.6280.
Jones, H.H. & Sieving, K.E. (2019). Foraging ecology drives social information reliance in an avian eavesdropping community. — Ecol. Evol. 9: 11584-11597. DOI:10.1002/ece3.5561.
Krams, I., Krama, T., Igaune, K. & Mand, R. (2007). Long-lasting mobbing of the pied flycatcher increases the risk of nest predation. — Behav. Ecol. 18: 1082-1084. DOI:10.1093/beheco/arm079.
Magrath, R.D., Haff, T.M., Fallow, P.M. & Radford, A.N. (2015). Eavesdropping on heterospecific alarm calls: from mechanisms to consequences. — Biol. Rev. 90: 560-586. DOI:10.1111/brv.12122.
Martínez, A.E., Gomez, J.P., Ponciano, J.M. & Robinson, S.K. (2016). Functional traits, flocking propensity, and perceived predation risk in an Amazonian understory bird community. — Am. Nat. 187: 607-619. DOI:10.1086/685894.
Motta-Junior, J.C. & Santos-Filho, P.D.S. (2012). Mobbing on the striped owl (Asio clamator) and barn owl (Tyto alba) by birds in southeast Brazil: do owl diets influence mobbing. — Ornitol. Neotrop. 23: 159-168.
Potvin, D.A., Ratnayake, C.P., Radford, A.N. & Magrath, R.D. (2018). Birds learn socially to recognize heterospecific alarm calls by acoustic association. — Curr. Biol. 28: 2632-2637. DOI:10.1016/j.cub.2018.06.013.
R Core Team (2017). R: a language and environment for statistical computing. — In: 3.3.1 edn. R Foundation for Statistical Computing, Vienna, available online at https://www.R-project.org.
Radloff, F.G. & Toit, J.T.D. (2004). Large predators and their prey in a southern African savanna: a predator’s size determines its prey size range. — J. Anim. Ecol. 73: 410-423. DOI:10.1111/j.0021-8790.2004.00817.x.
Randler, C. & Vollmer, C. (2013). Asymmetries in commitment in an avian communication network. — Naturwissenschaften 100: 199-203. DOI:10.1007/s00114-013-1009-6.
Schalk, C.M. & Cove, M.V. (2018). Squamates as prey: predator diversity patterns and predator-prey size relationships. — Food Webs 17: e00103. DOI:10.1016/j.fooweb.2018.e00103.
Sridhar, H., Beauchamp, G. & Shanker, K. (2009). Why do birds participate in mixed-species foraging flocks? A large-scale synthesis. — Anim. Behav. 78: 337-347. DOI:10.1016/j.anbehav.2009.05.008.
Strnad, M., Nemec, M., Veselý, P. & Fuchs, R. (2012). Red-backed shrikes (Lanius collurio) adjust the mobbing intensity, but not mobbing frequency, by assessing the potential threat to themselves from different predators. — Ornis Fenn. 89: 206.
Szymkowiak, J. (2021). Wood warblers learn to recognize mobbing calls of an unfamiliar species from heterospecific tutors. — Anim. Behav. 171: 1-11. DOI:10.1016/j.anbehav.2020.11.004.
Templeton, C.N., Greene, E. & Davis, K. (2005). Allometry of alarm calls: black-capped chickadees encode information about predator size. — Science 308: 1934-1937. DOI:10.1126/science.1108841.
Wang, B., Huang, Y.S., Li, X.K., Xiang, W.S., Ding, T., Huang, F.Z., Lu, S.H., Han, W.H., Wen, S.J. & He, L.J. (2014). Species composition and spatial distribution of a 15 ha northern tropical karst seasonal rain forest dynamics study plot in Nonggang, Guangxi, southern China. — Biodiv. Sci. 22: 141-156. DOI:10.3724/sp.J.1003.2014.13195.
Wilman, H., Belmaker, J., Simpson, J., de la Rosa, C., Rivadeneira, M.M. & Jetz, W. (2014). EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. — Ecology 95: 2027-2027. DOI:10.1890/13-1917.1.
Zhou, L.P., Peabotuwage, I., Gu, H., Jiang, D.M., Hu, G.H., Jiang, A.W., Mammides, C., Zhang, M.X., Quan, R.C. & Goodale, E. (2019). The response of mixed-species bird flocks to anthropogenic disturbance and elevational variation in southwest China. — Condor 121: duz028. DOI:10.1093/condor/duz028.
Zhou, L.P., Peabotuwage, I., Luo, K., Quan, R.C. & Goodale, E. (2021). Using playback to test leadership in mixed-species flocks and compare flocking with mobbing. — Anim. Behav. 180: 151-166. DOI:10.1016/j.anbehav.2021.08.012.
Zou, F.S., Jones, H., Colorado, Z.G.J., Jiang, D.M., Lee, T.M., Martinez, A., Sieving, K., Zhang, M., Zhang, Q. & Goodale, E. (2018). The conservation implications of mixed-species flocking in terrestrial birds, a globally-distributed species interaction network. — Biol. Conserv. 224: 267-276. DOI:10.1016/j.biocon.2018.06.004.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 407 | 229 | 3 |
Full Text Views | 102 | 16 | 3 |
PDF Views & Downloads | 142 | 30 | 4 |
Mobbing is a prevalent anti-predatory behaviour in birds where prey actively engage in harassing predators. Functional traits have been shown to affect prey species’ tendency to engage in mobbing, but empirical studies have largely neglected to assess the influence of some other potentially important functional traits, such as intraspecific and interspecific sociality, on mobbing or measured different aspects of the behaviour. In this study, we performed playback experiments that elicited mobbing responses from a forest bird community in southern China, to investigate the influence of body mass, foraging strata, as well as intra- and interspecific sociality, on the prevalence of mobbing, as well as the intensity of aggression and vocalness. We found that species with small body masses engaged in more frequent and intense mobbing behaviours. Notably, interspecific sociality was negatively associated with birds’ mobbing prevalence and tended to be negatively associated with vocalness.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 407 | 229 | 3 |
Full Text Views | 102 | 16 | 3 |
PDF Views & Downloads | 142 | 30 | 4 |