Food imprinting has both ecological and evolutionary significance but the generality of these patterns for octopods remains unknown. We aim to determine the prey preference of Octopus berrima hatchlings and whether it may be modified through imprinting. Firstly, hatchlings were given isopods, amphipods and mussels to determine their prey preference ranking. In a separate experiment, embryos were exposed to the visual and chemical stimuli of either isopods, amphipods or mussels separately at least a week before hatching. A prey preference test on hatchlings using all three prey types was conducted. We found that O. berrima had a preference ranking of isopods > amphipods > mussels. However, they retained their isopod prey preference regardless of the prey type they were embryonically exposed to, indicating that it is likely pre-determined as a result of innate biological processes rather than from life experience, providing evidence that imprinting does not occur in O. berrima.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Ambrose, R.F. (1984). Food preferences, prey availability, and the diet of Octopus bimaculatus Verrill. — J. Exp. Mar. Biol. Ecol. 77: 29-44.
Anderson, R.C., Wood, J.B. & Mather, J.A. (2008). Octopus vulgaris in the Caribbean is a specializing generalist. — Mar. Ecol. Prog. Ser. 371: 199-202.
André, J., Pecl, G.T., Semmens, J.M. & Grist, E.P.M. (2008). Early life-history processes in benthic octopus: relationships between temperature, feeding, food conversion, and growth in juvenile Octopus pallidus. — J. Exp. Mar. Biol. Ecol. 354: 81-92.
Baeza-Rojano, E., García, S., Garrido, D., Guerra-García, J.M. & Domingues, P. (2010). Use of amphipods as alternative prey to culture cuttlefish (Sepia officinalis) hatchlings. — Aquaculture 300: 243-246.
Baeza-Rojano, E., Domingues, P., Guerra-García, J.M., Capella, S., Noreña-Barroso, E., Caamal-Monsreal, C. & Rosas, C. (2013). Marine gammarids (Crustacea: Amphipoda): a new live prey to culture Octopus maya hatchlings. — Aquacult. Res. 44: 1602-1612.
Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixed-effects models using lme4. — J. Stat. Softw. 67: 1-48.
Bo, Q.-K., Zheng, X.-D. & Chen, Z.-W. (2020). Feeding intensity and molecular prey identification of the common long-armed octopus, Octopus minor (Mollusca: Octopodidae) in the wild. — PLoS ONE 15: e0220482.
Burghardt, G.M. & Hess, E.H. (1966). Food imprinting in the snapping turtle, Chelydra serpentina. — Science 151: 108-109.
Caddy, J.F. & Rodhouse, P.G. (1998). Cephalopod and groundfish landings: evidence for ecological change in global fisheries? — Rev. Fish Biol. Fish. 8: 431-444.
Chesson, J. (1983). The estimation and analysis of preference and its relatioship to foraging models. — Ecology 64: 1297-1304.
Dan, S., Shibasaki, S., Takasugi, A., Takeshima, S., Yamazaki, H., Ito, A. & Hamasaki, K. (2021). Changes in behavioural patterns from swimming to clinging, shelter utilization and prey preference of east Asian common octopus Octopus sinensis during the settlement process under laboratory conditions. — J. Exp. Mar. Biol. Ecol. 539: 151537.
Darmaillacq, A.-S., Chichery, R. & Dickel, L. (2006a). Food imprinting, new evidence from the cuttlefish Sepia officinalis. — Biol. Lett. 2: 345-347.
Darmaillacq, A.-S., Chichery, R., Shashar, N. & Dickel, L. (2006b). Early familiarization overrides innate feeding preference in newly-hatched Sepia officinalis cuttlefish. — Anim. Behav. 71: 511-514.
Darmaillacq, A.-S., Chichery, R., Shashar, N. & Dickel, L. (2006c). Early familiarization overrides innate prey preference in newly hatched Sepia officinalis cuttlefish. — Anim. Behav. 71: 511-514.
Darmaillacq, A.-S., Lesimple, C. & Dickel, L. (2008). Embryonic visual learning in the cuttlefish, Sepia officinalis. — Anim. Behav. 76: 131-134.
Darmaillacq, A.S., Jozet-Alves, C., Bellanger, C. & Dickel, L. (2014). Cuttlefish preschool or how to learn in the peri-hatching period. — In: Cephalopod cognition (Darmaillacq, A.S., Dickel, L. & Mather, J., eds). Cambridge University Press, Cambridge, p. 3-30.
Dickel, L., Boal, J.G. & Budelmann, B.U. (2000). The effect of early experience on learning and memory in cuttlefish. — Dev. Psychobiol. 36: 101-110.
Dickel, L., Darmaillacq, A.-S., Jozet-Alves, C. & Bellanger, C. (2013). Learning, memory, and brain plasticity in cuttlefish (Sepia officinalis). — In: Handbook of behavioral neuroscience (Menzel, R. & Benjamin, P.R., eds). Academic Preess, San Diego, CA, p. 318-333.
Diggins, T.P., Kaur, J., Chakraborti, R.K. & DePinto, J.V. (2002). Diet choice by the exotic round goby (Neogobius melanostomus) as influenced by prey motility and environmental complexity. — J. Gt. Lakes Res. 28: 411-420.
Domingues, N.D. (2007). Comportamento alimentar selectivo de juvenis de Octopus maya: determinação de preferências de consumo e resposta a estímulos visuais de dos tipos de presas. — BSc thesis, Universidade Lusófona de Humanidades e Tecnologias, Lisbon.
Dukas, R. (2013). Effects of learning on evolution: robustness, innovation and speciation. — Anim. Behav. 85: 1023-1030.
Fernandez-Gonzalez, V., Toledo-Guedes, K., Valero-Rodriguez, J.M., Agraso, M.M. & Sanchez-Jerez, P. (2018). Harvesting amphipods applying the integrated multitrophic aquaculture (IMTA) concept in off-shore areas. — Aquaculture 489: 62-69.
Fiorito, G., Affuso, A., Basil, J., Cole, A., de Girolamo, P., D’Angelo, L., Dickel, L., Gestal, C., Grasso, F., Kuba, M., Mark, F., Melillo, D., Osorio, D., Perkins, K., Ponte, G., Shashar, N., Smith, D., Smith, J. & Andrews, P.L. (2015). Guidelines for the care and welfare of cephalopods in research — a consensus based on an initiative by CephRes, FELASA and the Boyd group. — Lab. Anim. 49: 1-90.
Fox, J. & Weisberg, S. (2019). An R companion to applied regression. — Sage, Thousand Oaks, CA.
Garrido, D., Virginia Martín, M., Rodríguez, C., Iglesias, J., Navarro, J.C., Estévez, A., Hontoria, F., Becerro, M., Otero, J.J., Pérez, J., Varó, I., Reis, D.B., Riera, R., Sykes, A.V. & Almansa, E. (2016). Meta-analysis approach to the effects of live prey on the growth of Octopus vulgaris paralarvae under culture conditions. — Rev. Aquacult. 10: 3-14.
Guibé, M., Boal, J.G. & Dickel, L. (2010). Early exposure to odors changes later visual prey preferences in cuttlefish. — Dev. Psychobiol. 52: 833-837.
Guibé, M., Poirel, N., Houdé, O. & Dickel, L. (2012). Food imprinting and visual generalization in embryos and newly hatched cuttlefish, Sepia officinalis. — Anim. Behav. 84: 213-217.
Hubrecht, R. (2013). Revised Australian code for the care and use of animals for scientific purposes. — Anim. Welf. 22: 491.
Iglesias, J., Sánchez, F.J., Bersano, J.G.F., Carrasco, J.F., Dhont, J., Fuentes, L., Linares, F., Muñoz, J.L., Okumura, S., Roo, J., van der Meeren, T., Vidal, E.A.G. & Villanueva, R. (2007). Rearing of Octopus vulgaris paralarvae: present status, bottlenecks and trends. — Aquaculture 266: 1-15.
Immelmann, K. (1975). Ecological significance of imprinting and early learning. — Annu. Rev. Ecol. Syst. 6: 15-37.
Iribarne, O.O., Fernandez, M.E. & Zucchini, H. (1991). Prey selection by the small Patagonian octopus Octopus tehuelchus d’Orbigny. — J. Exp. Mar. Biol. Ecol. 148: 271-282.
Leite, T.S., Haimovici, M. & Mather, J. (2009). Octopus insularis (Octopodidae), evidences of a specialized predator and a time-minimizing hunter. — Mar. Biol. 156: 2355-2367.
Martínez, R., Gallardo, P., Pascual, C., Navarro, J., Sánchez, A., Caamal-Monsreal, C. & Rosas, C. (2014). Growth, survival and physiological condition of Octopus maya when fed a successful formulated diet. — Aquaculture 426-427: 310-317.
Martino, J.C., Steer, M. & Doubleday, Z. (2021). Supporting the sustainable development of Australia’s octopus industry: first assessment of an artisanal fishery. — Fish. Res. 241: 105999.
Mery, F. & Burns, J.G. (2010). Behavioural plasticity: an interaction between evolution and experience. — Evol. Ecol. 24: 571-583.
Moguel, C., Mascaró, M., Avila-Poveda, O.H., Caamal-Monsreal, C., Sanchez, A., Pascual, C. & Rosas, C. (2010). Morphological, physiological and behavioral changes during post-hatching development of Octopus maya (Mollusca: Cephalopoda) with special focus on the digestive system. — Aquacult. Biol. 9: 35-48.
Naef, A. (1928). Cephalopoda: embryology, Vol. 2. — Smithsonian Institution and the National Science Foundation, Washington, DC.
Nande, M., Iglesias, J., Domingues, P. & Pérez, M. (2017a). Effect of temperature on energetic demands during the last stages of embryonic development and early life of Octopus vulgaris (Cuvier, 1797) paralarvae. — Aquacult. Res. 48: 1951-1961.
Nande, M., Presa, P., Roura, Á., Andrews, P.L.R. & Pérez, M. (2017b). Prey capture, ingestion, and digestion dynamics of Octopus vulgaris paralarvae fed live zooplankton. — Front. Physiol. 8: 573.
Ponte, G., Andrews, P., Galligioni, V., Pereira, J. & Fiorito, G. (2019). Cephalopod welfare, biological and regulatory aspects: an EU experience. — In: The welfare of invertebrate animals (Carere, C. & Mather, J., eds). Springer, Cham, p. 209-228.
Portela, E., Simões, N., Rosas, C. & Mascaró, M. (2014). Can preference for crabs in juvenile Octopus maya be modified through early experience with alternative prey? — Behaviour 151: 1597-1616.
Portela-Rodríguez, E. (2011). Conducta de alimentación en juveniles del pulpo rojo Octopus maya: evidencias de preferencia innata o adquirida. — MSc thesis, Universidad Nacional Autónoma de México, Mexico City. Available online at https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000674565.
Punzo, F. (2002). Food imprinting and subsequent prey preference in the lynx spider, Oxyopes salticus (Araneae: oxyopidae). — Behav. Process. 58: 177-181.
Quintans, D. (2019). electivity: algorithms for Electivity Indices. — R package version 1.0.2. R Foundation for Statistical Computing, Vienna. Avialable online at https://CRAN.R-project.org/package=electivity.
Rodhouse, P.G. & Nigmatullin, C.M. (1996). Role as consumers. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 351: 1003-1022.
Romagny, S., Darmaillacq, A.-S., Guibé, M., Bellanger, C. & Dickel, L. (2012). Feel, smell and see in an egg: emergence of perception and learning in an immature invertebrate, the cuttlefish embryo. — J. Exp. Biol. 215: 4125-4130.
Roura, Á., González, Á.F., Redd, K. & Guerra, Á. (2012). Molecular prey identification in wild Octopus vulgaris paralarvae. — Mar. Biol. 159: 1335-1345.
Sauer, W.H.H., Gleadall, I.G., Downey-Breedt, N., Doubleday, Z., Gillespie, G., Haimovici, M., Ibáñez, C.M., Katugin, O.N., Leporati, S., Lipinski, M.R., Markaida, U., Ramos, J.E., Rosa, R., Villanueva, R., Arguelles, J., Briceño, F.A., Carrasco, S.A., Che, L.J., Chen, C.-S., Cisneros, R., Conners, E., Crespi-Abril, A.C., Kulik, V.V., Drobyazin, E.N., Emery, T., Fernández-Álvarez, F.A., Furuya, H., González, L.W., Gough, C., Krishnan, P., Kumar, B., Leite, T., Lu, C.-C., Mohamed, K.S., Nabhitabhata, J., Noro, K., Petchkamnerd, J., Putra, D., Rocliffe, S., Sajikumar, K.K., Sakaguchi, H., Samuel, D., Sasikumar, G., Wada, T., Zheng, X., Tian, Y., Pang, Y., Yamrungrueng, A. & Pecl, G. (2019). World octopus fisheries. — Rev. Fish. Sci. Aquacult. 29: 279-429.
Schausberger, P., Walzer, A., Hoffmann, D. & Rahmani, H. (2010). Food imprinting revisited: early learning in foraging predatory mites. — Behaviour 147: 883-897.
Scheel, D., Lauster, A. & Vincent, T.L.S. (2007). Habitat ecology of Enteroctopus dofleini from middens and live prey surveys in Prince William Sound, Alaska. — In: Cephalopods present and past: new insights and fresh perspective (Landman, N.H., Davis, R.A. & Mapes, R.H., eds). Springer, Dordrecht, p. 434-458.
Segawa, S. & Nomoto, A. (2002). Laboratory growth, feeding, oxygen consumption and ammonia excretion of Octopus ocellatus. — Bull. Mar. Sci. 71: 801-813.
Spreitzenbarth, S., Kelly, M.L. & Jeffs, A. (2021). Insights into first feeding of newly-hatched paralarvae of the merobenthic octopus, Octopus tetricus. — Aquaculture 532: 736049.
Stranks, T.N. & Norman, M.D. (1992). Review of the Octopus australis complex from Australia and New Zealand, with description of a new species (Mollusca: Cephalopoda). — Mem. Mus. Vic. 53: 345-373.
Tait, R.W. (1980). Aspects of the ecology and life history of Octopus australis Hoyle, from northern Port Phillip Bay. — BSc thesis, Monash University, Clayton, VIC.
Vargas-Abúndez, J.A., López-Vázquez, H.I., Mascaró, M., Martínez-Moreno, G.L. & Simões, N. (2021). Marine amphipods as a new live prey for ornamental aquaculture: exploring the potential of Parhyale hawaiensis and Elasmopus pectenicrus. — PeerJ. 9: e10840.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 643 | 241 | 47 |
Full Text Views | 156 | 13 | 0 |
PDF Views & Downloads | 234 | 24 | 0 |
Food imprinting has both ecological and evolutionary significance but the generality of these patterns for octopods remains unknown. We aim to determine the prey preference of Octopus berrima hatchlings and whether it may be modified through imprinting. Firstly, hatchlings were given isopods, amphipods and mussels to determine their prey preference ranking. In a separate experiment, embryos were exposed to the visual and chemical stimuli of either isopods, amphipods or mussels separately at least a week before hatching. A prey preference test on hatchlings using all three prey types was conducted. We found that O. berrima had a preference ranking of isopods > amphipods > mussels. However, they retained their isopod prey preference regardless of the prey type they were embryonically exposed to, indicating that it is likely pre-determined as a result of innate biological processes rather than from life experience, providing evidence that imprinting does not occur in O. berrima.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 643 | 241 | 47 |
Full Text Views | 156 | 13 | 0 |
PDF Views & Downloads | 234 | 24 | 0 |