In ungulate assemblages, although interspecific differences in body size and gregariousness are thought to have a direct impact on winning or losing in interference competition, this has not been fully investigated. We observed a total of 64 instances of interspecific contact between larger-gregarious sika deer and smaller-solitary Japanese serows over eight years field observations. Deer-to-serow aggression were never observed. Whereas, serows showed antagonistic behaviour, such as walk push and chasing, to deer, but could rarely displace deer. Serows showed higher alertness to deer than deer did to serows. These results suggest that larger-gregarious ungulates do not necessarily exclude smaller-solitary ones and serows are sensitive to the presence of deer. Differences in aggressiveness and alertness between deer and serows may reflect differences in territoriality: serows may be more sensitive to the invasion of deer into their territory. Serows’ sensitivity to deer may have a negative effect on their population.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Anthony, R.G. & Smith, N.S. (1977). Ecological relationships between mule deer and white-tailed deer in southeastern Arizona. — Ecol. Monogr. 47: 255-277.
Ara, T. (2022). brunnermunzel: (permuted) Brunner–Munzel test. — R package version 2.0. R Foundation for Statistical Computing, Vienna. Available online at https://CRAN.R-project.org/package=brunnermunzel.
Bagchi, S., Goyal, S. & Sankar, K. (2003). Niche relationships of an ungulate assemblage in a dry tropical forest. — J. Mammal. 84: 981-988.
Bates, D., Maechler, M., Bolker, B. & Walker, S. (2015). Fitting linear mixedeffects models using lme4. — J. Stat. Softw. 67: 1-48.
Begon, M., Townsend, C. & Harper, J. (1996). Ecology: individuals, populations and communities, 3rd edn. — Blackwell, Oxford.
Burger, J. & Gochfeld, M. (1994). Vigilance in African mammals: differences among mothers, other females, and males. — Behaviour 131: 153-169.
Burnham, K.P. & Anderson, D. (2002). Model selection and multimodel inference. — Springer, New York, NY.
Côté, S.D., Rooney, T.P., Tremblay, J.P., Dussault, C. & Waller, D.M. (2004). Ecological impacts of deer overabundance. — Annu. Rev. Ecol. Evol. Syst. 35: 113-147.
De Boer, W.F. & Prins, H. (1990). Large herbivores that strive mightily but eat and drink as friends. — Oecologia 82: 264-274.
Endo, Y., Takada, H. & Takatsuki, S. (2017). Comparison of the food habits of the sika deer (Cervus nippon), the Japanese serow (Capricornis crispus), and the wild boar (Sus scrofa), sympatric herbivorous mammals from Mt. Asama, central Japan. — Mammal Stud. 42: 131-140.
Faas, C.J. & Weckerly, F.W. (2010). Habitat interference by axis deer on white-tailed deer. — J. Wildl. Manage. 74: 698-706.
Feldhamer, G.A. (1980). Cervus nippon. — Mammal. Spec. 128: 1-7.
Ferretti, F. (2011). Interspecific aggression between fallow and Roe deer. — Ethol. Ecol. Evol. 23: 179-186.
Ferretti, F. & Mori, E. (2020). Displacement interference between wild ungulate species: does it occur? — Ethol. Ecol. Evol. 32: 2-15.
Ferretti, F., Sforzi, A. & Lovari, S. (2008). Intolerance amongst deer species at feeding: Roe deer are uneasy banqueters. — Behav. Process. 78: 487-491.
Ferretti, F., Sforzi, A. & Lovari, S. (2011). Behavioural interference between ungulate species: Roe are not on velvet with fallow deer. — Behav. Ecol. Sociobiol. 65: 875-887.
Ferretti, F., Sforzi, A. & Lovari, S. (2012). Avoidance of fallow deer by Roe deer may not be habitat-dependent. — Hystrix 23: 28-35.
Ferretti, F., Corazza, M., Campana, I., Pietrocini, V., Brunetti, C., Scornavacca, D. & Lovari, S. (2015). Competition between wild herbivores: reintroduced red deer and Apennine chamois. — Behav. Ecol. 26: 550-559.
Formenti, N., Viganó, R., Fraquelli, C., Trogu, T., Bonfanti, M., Lanfranchi, P., Palme, R. & Ferrari, N. (2018). Increased hormonal stress response of Apennine chamois induced by interspecific interactions and anthropogenic disturbance. — Eur. J. Wildl. Res. 64: 1-8.
Gordon, I. & Illius, A. (1989). Resource partitioning by ungulates on the Isle of Rhum. — Oecologia 79: 383-389.
Hartig, F. (2020). DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. — R Foundation for Statistical Computing, Vienna. Available online at https://CRAN.R-project.org/package=DHARMa (accessed 21 December 2022).
Hashimoto, Y. & Mori, Y. (2017). Transition in the distribution of the Japanese serow in the Suzuka Mountains Japanese serow protection area. — Wildl. Hum. Soc. 5: 1-8 (in Japanese with English abstract).
Hiruma, M., Takada, H., Washida, A. & Koike, S. (2023). Dietary partitioning and competition between sika deer and Japanese serows in high elevation habitats. — Mammal. Res. 68: 305-315. DOI:10.1007/s13364-023-00683-5.
Jass, C.N. & Mead, J.I. (2004). Capricornis crispus. — Mammal. Spec. 750: 1-10.
Kamei, T., Takeda, K., Izumiyama, S. & Ohsima, K. (2010). The effect of hunting on the behavior and habitat utilization of sika deer (Cervus nippon). — Mammal. Stud. 35: 235-241.
Kobayashi, K. & Takatsuki, S. (2012). A comparison of food habits of two sympatric ruminants of Mt. Yatsugatake, central Japan: sika deer and Japanese serow. — Acta Theriol. 57: 343-349.
Koganezawa, M. (1999). Changes in the population dynamics of Japanese serow and sika deer as a result of competitive interactions in the Ashio Mountains, central Japan. — Biosph. Conserv. 2: 35-44.
Lehner, P. (1996). Handbook of ethological methods. — Cambridge University Press, Cambridge.
Lincoln, G.A., Guinness, F. & Short, R.V. (1972). The way in which testosterone controls the social and sexual behavior of the red deer stag (Cervus elaphus). — Horm. Behav. 3: 375-396.
Lovari, S., Ferretti, F., Corazza, M., Minder, I., Troiani, N., Ferrari, C. & Saddi, A. (2014). Unexpected consequences of reintroductions: competition between reintroduced red deer and Apennine chamois. — Anim. Conserv. 17: 359-370.
Maruyama, N. (1981). A study of the seasonal movements and aggregation patterns of sika deer. — Bull. Facul. Agricult. Tokyo Univ. Agricult. Technol. 23: 1-85 (in Japanese).
Miura, S. (1986). Body and horn growth patterns in the Japanese serow, Capricornis crispus. — J. Mammal. Soc. Jpn. 11: 1-13.
Nagata, J. (2015). Cervus nippon (Temminck, 1836). — In: The wild mammals of Japan, 2nd edn. (Ohdachi, S.D., Ishibashi, Y., Iwasa, M.A., Fukui, D. & Saitoh, T., eds). Shoukadoh Book Sellers and the Mammalogical Society of Japan, Kyoto, p. 304-306.
Nawa, A. (2009). Mori no Kenjya Kamoshika. — Sun-Rise Press, Hikone (in Japanese).
Nowicki, P. & Koganezawa, M. (2002). Space as the potential limiting resource in the competition between the Japanese serow and the sika deer in Ashio, central Japan. — Biosph. Conserv. 4: 69-77. DOI:10.20798/biospherecons.4.2_69.
Ochiai, K. (2016). The Japnese serow: behavior and ecology of a solitary ungulate. — University of Tokyo Press, Tokyo (in Japanese).
Ochiai, K. & Susaki, K. (2002). Effects of territoriality on population density in the Japanese serow (Capricornis crispus). — J. Mammal. 83: 964-972.
Ohashi, H., Yoshikawa, M., Oono, K., Tanaka, N., Hatase, Y. & Murakami, Y. (2014). The impact of sika deer on vegetation in Japan: setting management priorities on a national scale. — Environ. Manage. 54: 631-640.
Ohtsu, A. & Takatsuki, S. (2021). Diets and habitat selection of takhi and red deer in Hustai National Park, Mongolia. — Wildl. Biol.: 749. DOI:10.2981/wlb.00749.
Putman, R. (1996). Competition and resource partitioning in temperate ungulate assemblies. — Chapman and Hall, London.
R Core Team (2020). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna. Available online at https://www.R-project.org.
Rautiainen, H., Bergvall, U.A., Felton, A.M., Tigabu, M. & Kjellander, P. (2021). Nutritional niche separation between native Roe deer and the nonnative fallow deer—a test of interspecific competition. — Mammal. Res. 66: 443-455.
Ruckstuhl, K., Festa-Bianchet, M. & Jorgenson, J. (2003). Bite rates in Rocky Mountain bighorn sheep (Ovis canadensis): effects of season, age, sex and reproductive status. — Behav. Ecol. Sociobiol. 54: 167-173.
Takada, H. (2023). Unique spatial behavior of the Japanese serow (Capricornis crispus) in the open mountains of Mt. Fuji. — Acta Ethol. 26: 127-132. DOI:10.1007/s10211-023-00418-4.
Takada, H. & Minami, M. (2019a). Do differences in ecological conditions influence grouping behaviour in a solitary ungulate, the Japanese serow? — Behaviour 156: 245-264.
Takada, H. & Minami, M. (2019b). Food habits of the Japanese serow (Capricornis crispus) in an Alpine habitat on Mount Asama, central Japan. — Mammalia 83: 455-460.
Takada, H. & Minami, M. (2021). Open habitats promote female group formation in a solitary ungulate: the Japanese serow. — Behav. Ecol. Sociobiol. 75: 60.
Takada, H. & Washida, A. (2020). Ecological drivers of group size variation in sika deer: habitat structure, population density, or both? — Mammal. Biol. 100: 445-452.
Takada, H., Ohuchi, R., Watanabe, H., Yano, R., Miyaoka, R., Nakagawa, T., Zenno, Y. & Minami, M. (2020a). Habitat use and the coexistence of the sika deer and the Japanese serow, sympatric ungulates from Mt. Asama, central Japan. — Mammalia 84: 503-511.
Takada, H., Nakamura, K., Watanabe, H. & Minami, M. (2020b). Spatial organization and mating behavior of the Japanese serow under a low population density. — Mammalia 84: 219-226.
Takada, H., Yano, R., Katsumata, A., Takatsuki, S. & Minami, M. (2021). Diet compositions of two sympatric ungulates, the Japanese serow (Capricornis crispus) and the sika deer (Cervus nippon), in a montane forest and an alpine grassland of Mt. Asama, central Japan. — Mammal. Biol. 101: 681-694.
Takada, H., Washida, A., Yano, R., Tezuka, N. & Minami, M. (2023). Evolution from monogamy to polygyny: insights from the solitary Japanese serow. — Behav. Ecol. Sociobiol. 77: 28.
Takii, A., Izumiyama, S. & Taguchi, M. (2012). Partial migration and effects of climate on migratory movements of sika deer in Kirigamine Highland, central Japan. — Mammal. Stud. 37: 331-340.
Tilman, D. (1987). The importance of the mechanisms of interspecific competition. — Am. Nat. 129: 769-774.
Underwood, R. (1982). Vigilance behaviour in grazing African antelopes. — Behaviour 79: 81-107.
Uvíra, M., Marecová, K., Dokoupil, M., Dvořáček, I. & Handlos, P. (2019). Fatal deer attack in a rutting season. — Forensic Sci. Med. Pathol. 15: 93-96.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 801 | 417 | 113 |
Full Text Views | 283 | 11 | 2 |
PDF Views & Downloads | 422 | 20 | 2 |
In ungulate assemblages, although interspecific differences in body size and gregariousness are thought to have a direct impact on winning or losing in interference competition, this has not been fully investigated. We observed a total of 64 instances of interspecific contact between larger-gregarious sika deer and smaller-solitary Japanese serows over eight years field observations. Deer-to-serow aggression were never observed. Whereas, serows showed antagonistic behaviour, such as walk push and chasing, to deer, but could rarely displace deer. Serows showed higher alertness to deer than deer did to serows. These results suggest that larger-gregarious ungulates do not necessarily exclude smaller-solitary ones and serows are sensitive to the presence of deer. Differences in aggressiveness and alertness between deer and serows may reflect differences in territoriality: serows may be more sensitive to the invasion of deer into their territory. Serows’ sensitivity to deer may have a negative effect on their population.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 801 | 417 | 113 |
Full Text Views | 283 | 11 | 2 |
PDF Views & Downloads | 422 | 20 | 2 |