Although hissing is a common strategy of defence used by snakes, especially of the Phytonidae and Boidae families, few studies have described in detail the acoustics components of this behaviour. Here we gathered eight recordings from six different boas from Brazil and extracted acoustic measurements from their hissing sounds. We also examined the potential of our measurements to encode individual identity using discriminant function analyses (DFAs) and to correlate with body length using linear mixed models (LMMs). Boas produce from four to 12 hisses per minute (7.13 ± 3.04) evoked by a negative stimulus, a visual looming stimulus generated by researcher’s approach. Each hiss usually has two parts (the first louder part and the second softer part) that are basically broadband white noises split by a short silent interval. The first hiss part also has more frequency modulations and narrower bandwidth than the second hiss part. The DFAs correctly assigned all hisses to their correspondent individuals in the testing data. The first discriminant function explained most of the variance (⩾84%) in the discrimination between groups for the entire hiss and for both hiss parts in the training data subset. Frequency parameters and spectral entropy (for entire hiss and hiss part 1) and the mean frequency and duration (for hiss part 2) were the strongest absolute loadings in the DFAs. Intraspecific morphological traits (e.g. sexual dimorphism and ontogenetic variations) may influence the sound parameters, as detected by individual variations and the tendency for larger individuals to produce lower frequency hisses. Further studies may investigate these aspects in detail, including anatomy of the snake’s larynx and experiments with different types of predators.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Andrew, R.L., Albert, A.Y.K., Renaut, S., Rennison, D.J., Bock, D.G. & Vines, T. (2015). Assessing the reproducibility of discriminant function analyses. — PeerJ 3: e1137. DOI:10.7717/peerj.1137.
Anikin, A. (2019). Soundgen: An open-source tool for synthesizing nonverbal vocalizations. — Behav. Res. Methods 51: 778-792. DOI:10.3758/s13428-018-1095-7.
Araya-Salas, M. (2021). dynaSpec: dynamic spectrogram visualizations (1.0.1). [R package]. Available online at https://cran.r-project.org/web/packages/dynaSpec/index.html.
Araya-Salas, M. & Smith-Vidaurre, G. (2017). warbleR: an R package to streamline analysis of animal acoustic signals. — Methods Ecol. Evol. 8: 184-191. DOI:10.1111/2041-210X.12624.
Araya-Salas, M., Smith-Vidaurre, G. & Webster, M. (2019). Assessing the effect of sound file compression and background noise on measures of acoustic signal structure. — Bioacoustics 28: 57-73. DOI:10.1080/09524622.2017.1396498.
Aubret, F. & Mangin, A. (2014). The snake hiss: potential acoustic mimicry in a viper–colubrid complex. — Biol. J. Linn. Soc. 113: 1107-1114. DOI:10.1111/bij.12374.
Baeckens, S., Llusia, D., García-Roa, R. & Martín, J. (2019). Lizard calls convey honest information on body size and bite performance: a role in predator deterrence? — Behav. Ecol. Sociobiol. 73: 1-11. DOI:10.1007/s00265-019-2695-7.
Bauder, J.M., Macey, J.N., Stohlgren, K.M., Day, A., Snow, F., Safer, A., Redmond, R., Waters, J.M., Wallace, M. & Stevenson, D.J. (2015). Factors influencing the display of multiple defensive behaviors in Eastern Indigo snakes (Drymarchon couperi). — Herp. Conserv. Biol. 10: 559-571.
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. — J. Roy. Stat. Soc. B: Methodology 57: 289-300. DOI:10.1111/j.2517-6161.1995.tb02031.
Bjelica, V., Anđelković, M., Lakušić, M., Maričić, M., Arsovski, D., Tomović, L. & Golubović, A. (2023). A dicey situation: capture behaviours in free-ranging dice snakes. — Behav. Ecol. Sociobiol. 77: 48. DOI:10.1007/s00265-023-03323-9.
Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H. & White, J.S.S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. — Trends Ecol. Evol. 24: 127-135. DOI:10.1016/j.tree.2008.10.008.
Brooks, M.E., Kristensen, K., Benthem, K.J., Van Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Mächler, M. & Bolker, B.M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. — R J. 9: 378-378. DOI:10.32614/RJ-2017-066.
Burdett, A.F. (1971). Observations of captive pythons (P. sebae) in Malawi over a three year period. — J. Herpetol. Ass. Afr. 8: 11-15.
Cardozo, G., Chiaraviglio, M. & Bertona, M. (2003). Intrapopulation variation in life history traits of Boa constrictor occidentalis in Argentina. — J. Herpetol. 37: 608-614.
Charif, R.A., Waack, A.M. & Strickman, L.M. (2010). Raven Pro 1.4 user’s manual. — Cornell University Press, Ithaka, NY.
Dechaume-Moncharmont, F.X., Monceau, K. & Cezilly, F. (2011). Sexing birds using discriminant function analysis: a critical appraisal. — Auk 128: 78-86. DOI:10.1525/auk.2011.10129.
Díaz, S. & Labra, A. (2023). Exploring Sound emission of the lizard Pristidactylus valeriae. — Animals 13: 3813. DOI:10.3390/ani13243813.
Fernandes, I.Y., Koch, E.D. & Monico, A.T. (2023). First record of a snake call in South America: the unusual sound of an ornate snail-eater Dipsas catesbyi. — Acta Amazon. 53: 243-245. DOI:10.1590/1809-4392202300431.
Gans, C. & Maderson, P.F.A. (1973). Sound producing mechanisms in recent reptiles: review and comment. — Am. Zool. 13: 1195-1203. DOI:10.1093/icb/13.4.1195.
Gibbons, J.W. & Dorcas, M.E. (2002). Defensive behavior of cottonmouths (Agkistrodon piscivorus) toward humans. — Copeia: 195-198. DOI:10.1643/0045-8511(202)002[0195:DBOCAP]2.0.CO;2.
Gonzalez, R.C., Bezerra de Lima, L.C., Passos, P. & Silva, M.J.J. (2024). The good, the bad and the boa: an unexpected new species of a true boa revealed by morphological and molecular evidence. — PlOS ONE 19: e0298159. DOI:10.1371/journal.pone.0298159.
Heffner, R.S. & Heffner, H.E. (1985). Hearing in mammals: the least weasel. — J. Mammal. 66: 745-755. DOI:10.2307/1380801.
Jaiswara, R., Nandi, D. & Balakrishnan, R. (2013). Examining the effectiveness of discriminant function analysis and cluster analysis in species identification of male field crickets based on their calling songs. — PLoS ONE 8: e75930. DOI:10.1371/journal.pone.0075930.
Kinney, C., Abishahin, G. & Young, B.A. (1998). Hissing in rattlesnakes: Redundant signaling or inflationary epiphenomenon? — J. Exp. Zool. A. 280: 107-113. DOI:10.1002/(SICI)1097-010X(19980201)280:2<107::AID-JEZ1>3.0.CO;2-S.
Klump, G.M., Kretzschmar, E. & Curio, E. (1986). The hearing of an avian predator and its avian prey. — Behav. Ecol. Sociobiol. 18: 317-323. DOI:10.1007/BF00299662.
Kuhn, M. (2022). caret: Classification and Regression Training (6.0). [R package]. Available online at https://cran.r-project.org/web/packages/caret/index.html.
Labra, A., Reyes-Olivares, C., Moreno-Gómez, F.N., Velásquez, N.A., Penna, M., Delano, P.H. & Narins, P.M. (2021). Geographic variation in the matching between call characteristics and tympanic sensitivity in the Weeping lizard. — Ecol. Evol. 11: 18633-18650. DOI:10.1002/ece3.8469.
Liu, J. & Liang, W. (2022). Hissing calls of tits elicit vigilance in feeding squirrels. — Ethol. Ecol. Evol. 34: 636-642. DOI:10.1080/03949370.2021.1989053.
Machado-Filho, P.R. & Gonzalez, R.C. (2024). Hissing — First description of this defensive behaviour by the reticulate wormsnake Amerotyphlops reticulatus. — Herpetol. Bull. 169: 41-42. DOI:10.33256/hb169.4142.
Miranda, R.B., Klaczko, J., Tonini, J.F. & Brandão, R.A. (2023). Escaping from predators: A review of Neotropical lizards defence traits. — Ethol. Ecol. Evol. 35: 377-407. DOI:10.1080/03949370.2022.2082538.
Monroy-Vilchis, O., Sánchez, Ó. & Urios, V. (2011). Consumption of an adult Puma yagouaroundi (Felidae) by the snake Boa constrictor (Boidae) in Central Mexico. — Rev. Mex. Biod. 82: 319-321. DOI:10.22201/ib.20078706e.2011.1.372.
Nogueira, C.C., Argôlo, A.J.S., Arzamendia, V., Azevedo, J.A., Barbo, F.E., Bérnils, R.S., Bolochio, B.E., Borges-Martins, M., Brasil-Godinho, M., Braz, H., Buononato, M.A., Cisneros-Heredia, D.F., Colli, G.R., Costa, H.C., Franco, F.L., Giraudo, A., Gonzalez, R.C., Guedes, T., Hoogmoed, M.S., Marques, O.A.V., Montingelli, G.G., Passos, P., Prudente, A.L.C., Rivas, G.A., Sanchez, P.M., Serrano, F.C., Silva Jr, N.J., Strussman, C., Vieira-Alencar, J.P.S., Zaher, H., Sawaya, R.J. & Martins, M. (2019). Atlas of Brazilian snakes: verified point-locality maps to mitigate the Wallacean shortfall in a megadiverse snake fauna. — South Am. J. Herpetol. 14. DOI:10.2994/SAJH-D-19-00120.1.
Oliveira, J.D., Souza, V.L.A. & Morato, S.A.A. (2015). Boa constrictor (Common Boa) feeds on and regurgitates alive a lizard Iguana iguana (Green Iguana). — Herpetol. Bull. 133: 33.
Pyron, R.A., Reynolds, R.G. & Burbrink, F.T. (2014). A taxonomic revision of boas (Serpentes: Boidae). — Zootaxa 3846: 249-260. DOI:10.11646/ZOOTAXA.3846.2.5.
Quintino, E.P. & Bicca-Marques, J.C. (2013). Predation of Alouatta puruensis by Boa constrictor. — Primates 54: 325-330. DOI:10.1007/s10329-013-0377-z.
Rodríguez, R.L., Araya-Salas, M., Gray, D.A., Reichert, M.S., Symes, L.B., Wilkins, M.R., Safran, R.J. & Höbel, G. (2015). How acoustic signals scale with individual body size: common trends across diverse taxa. — Behav. Ecol. 26: 168-177. DOI:10.1093/beheco/aru174.
Russell, A.P. & Bauer, A.M. (2021). Vocalization by extant nonavian reptiles: a synthetic overview of phonation and the vocal apparatus. — Anat. Rec. 304: 1478-1528. DOI:10.1002/ar.24553.
Santos-Filho, I.D., Souza, M.B., Assis, R.A., Amorim, N.P.L., Borges, R.E. & Santos, L.R.S. (2021). Predator-prey interaction episode between Boa constrictor Linnaeus, 1758 (Serpentes: Boidae) and Columbina talpacoti (Temminck, 1810) (Columbiformes: Columbidae). — Herpetol. Notes 14: 899-901.
Silva, M.X., Apolonio, N., Cavalcanti, F. & Lemos, F.G. (2018). Stronger together: Observation on crab-eating foxes (Cerdocyon thous) cooperatively preying their potential predator. — Mastozool. Neotrop. 25: 499-503. DOI:10.31687/saremMN.18.25.2.0.13.
Smith, J. & Doe, A. (2019). Sounding off: relationships between call properties. — Herpetologica 75: 175-185. DOI:10.1655/0018-0831-75.3.175.
Souza, E., Lima-Santos, J., Entiuaspe-Neto, O.M., Santos, M.M., Moura, P.R. & Hingst-Zaher, E. (2022). Ophiophagy in Brazilian birds: a contribution from a collaborative platform of citizen science. — Ornithol. Res. 30: 15-24. DOI:10.1007/s43388-022-00082-5.
Taigen, T.L. & Wells, K.D. (1985). Energetics of vocalization by an anuran amphibian (Hyla versicolor). — J. Comp. Phys. B 155: 163-170. DOI:10.1007/BF00685209.
Thomas, O. & Allain, S. (2021). Review of prey taken by anacondas (Squamata, Boidae: Eunectes). — Reptiles Amphibians 28(2): 329-334. DOI:10.17161/randa.v28i2.15504.
Venables, W.N. & Ripley, B.D. (2002). Modern applied statistics with S. Statistics and computing. — Springer Press, New York, NY.
Young, B.A. (1991). Morphological basis of “growling” in the King Cobra, Ophiophagus hannah. — J. of Exp. Zool. 260: 275-287. DOI:10.1002/jez.1402600302.
Young, B.A. (1997). A review of sound production and hearing in snakes, with a discussion of intraspecific acoustic communication in snakes. — J. Penn. Acad. Sci. 71: 39-46.
Young, B.A. (2003). Snake bioacoustics: toward a richer understanding of the behavioral ecology of snakes. — Q. Rev. Biol. 78: 303-325. DOI:10.1086/377052.
Young, B.A., Nejman, N., Meltzer, K. & Marvin, J. (1999). The mechanics of sound production in the puff adder Bitis arietans (Serpentes: Viperidae) and the information content of the snake hiss. — J. Exp. Biol. 202: 2281-2289. DOI:10.1242/jeb.202.17.2281.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 383 | 383 | 41 |
Full Text Views | 7 | 7 | 0 |
PDF Views & Downloads | 22 | 22 | 0 |
Although hissing is a common strategy of defence used by snakes, especially of the Phytonidae and Boidae families, few studies have described in detail the acoustics components of this behaviour. Here we gathered eight recordings from six different boas from Brazil and extracted acoustic measurements from their hissing sounds. We also examined the potential of our measurements to encode individual identity using discriminant function analyses (DFAs) and to correlate with body length using linear mixed models (LMMs). Boas produce from four to 12 hisses per minute (7.13 ± 3.04) evoked by a negative stimulus, a visual looming stimulus generated by researcher’s approach. Each hiss usually has two parts (the first louder part and the second softer part) that are basically broadband white noises split by a short silent interval. The first hiss part also has more frequency modulations and narrower bandwidth than the second hiss part. The DFAs correctly assigned all hisses to their correspondent individuals in the testing data. The first discriminant function explained most of the variance (⩾84%) in the discrimination between groups for the entire hiss and for both hiss parts in the training data subset. Frequency parameters and spectral entropy (for entire hiss and hiss part 1) and the mean frequency and duration (for hiss part 2) were the strongest absolute loadings in the DFAs. Intraspecific morphological traits (e.g. sexual dimorphism and ontogenetic variations) may influence the sound parameters, as detected by individual variations and the tendency for larger individuals to produce lower frequency hisses. Further studies may investigate these aspects in detail, including anatomy of the snake’s larynx and experiments with different types of predators.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 383 | 383 | 41 |
Full Text Views | 7 | 7 | 0 |
PDF Views & Downloads | 22 | 22 | 0 |