Substrate-borne vibrational communication is commonly used by herbivorous insects to communicate intraspecific information. This form of communication is underexplored and many discoveries of the form and functional significance of these vibrations have yet to be made. Here, we add red milkweed beetles, Tetraopes tetrophthalmus (Coleoptera: Cerambycidae) to the record of arthropods that communicate with these plant-borne vibrations. Red milkweed beetles, like other cerambycids, commonly use stridulation to produce audible squeaks when in stressful situations and can also produce plant-borne vibrations when in contact with conspecifics. These beetles engage in fights for territory which ultimately results in mating opportunities (i.e., contests). We placed beetles into three sex-ratio treatments: male–male (contests), male–female (copulatory courtship), or male–male–female (contests and copulatory courtship). We first describe contests and copulatory courtship behaviours. We then used laser vibrometry and found that red milkweed beetles communicate by producing plant-borne vibrational signals composed of low-frequency rumbles and high-frequency clacks during male–male contests and copulatory courtship. We compared the spectral and temporal features of the vibrations between the two pre-copulatory contexts. We found that vibrational signals were shorter and had a higher fundamental and dominant frequencies when beetles engaged in contests compared to copulatory courtship behaviours. Our results show that these beetles use plant-borne vibrations as context-dependent signals that communicate different information under these two pre-copulatory scenarios. Our data suggests that these context-dependent signals may help beetles gain access to mates and prolong copulation.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Agrawal, A.A. (2004). Resistance and susceptibility of milkweed: Competition, root herbivory, and plant genetic variation. — Ecology 85: 2118-2133. DOI:10.1890/03-4084.
Agrawal, A. (2005). Natural selection on common milkweed (Asclepias syriaca). by a community of specialized insect herbivores. — Evol. Ecol. Res. 7: 651-667.
Alexander, R.D. (1957). Sound production and associated behavior in insects. — Anim. Behav. 6: 252-252.
Allison, J.D., Borden, J.H. & Seybold, S.J. (2004). A review of the chemical ecology of the Cerambycidae (Coleoptera). — Chemoecology 14: 123-150. DOI:10.1007/s00049-004-0277-1.
Bernays, E.A. & Chapman, R.F. (2007). Host-plant selection by phytophagous insects, vol 2. — Springer, Dordrecht.
Breidbach, O. (1986). Studies on the stridulation of Hylotrupes bajulus (L.)(Cerambycidae, Coleoptera): communication through support vibration—morphology and mechanics of the signal. — Behav. Process. 12: 169-186. DOI:10.1016/0376-6357(86)90055-0.
Brooks, M.E., Kristensen, K., van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Maechler, M. & Bolker, B.M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated Generalized Linear Mixed Modeling. — R J. 9: 378-400. DOI:10.32614/RJ-2017-066.
Bursac, Z., Gauss, C.H., Williams, D.K. & Hosmer, D.W. (2008). Purposeful selection of variables in logistic regression. — Source Code Biol. Med. 3: 17. DOI:10.1186/1751-0473-3-17.
Caldwell, E., Read, J. & Sanson, G.D. (2015). Which leaf mechanical traits correlate with insect herbivory among feeding guilds? — Ann. Bot. 117: 349-361. DOI:10.1093/aob/mcv178.
Chemsak, J.A. (1963). Taxonomy and bionomics of the genus Tetraopes (Cerambycidae: Cleoptera), Vol. 30. — University of California Press, Berkeley, CA.
Clifford, M.R. & Riffell, J.A. (2013). Mixture and odorant processing in the olfactory systems of insects: a comparative perspective. — J. Comp. Physiol. A 199: 911-928. DOI:10.1007/s00359-013-0818-6.
Cocroft, R.B. & Rodríguez, R.L. (2005). The behavioral ecology of insect vibrational communication. — BioScience 55: 323-334. DOI:10.1641/0006-3568(2005)055[0323:tbeoiv]2.0.co;2.
Čokl, A. & Virant-Doberlet, M. (2003). Communication with substrate-borne signals in small plant-dwelling insects. — Ann. Rev. Entomol. 48: 29-50.
Coley, P.D. & Barone, J. (1996). Herbivory and plant defenses in tropical forests. — Ann. Rev. Ecol. Syst. 27: 305-335.
Craig, E.J., Goldman, M.B. & Agrawal, A.A. (2024). Sexual dimorphism, deactivation of plant defense, and attraction of conspecifics in the four-eyed red milkweed beetle (Tetraopes tetrophthalmus). — J. Insect Behav. 37: 1-8. DOI:10.1007/s10905-024-09847-w.
Dumortier, B. (1963). Morphology of sound emission apparatus in Arthropoda. — In: Acoustic behaviour of animals (Busnel, R.-G., ed.). Elsevier, Amsterdam, p. 277-345.
Eberhard, M.J.W. (1969). The social biology of polistine wasps. — Misc. Publ. Mus. Zool. Univ. Michigan 140: 1-101.
Eberhard, W.G. (1991). Copulatory courtship and cryptic female choice in insects. — Biol. Rev. 66: 1-31. DOI:10.1111/j.1469-185X.1991.tb01133.x.
Eberhard, W.G. (1994). Evidence for widespread courtship during copulation in 131 species of insects and spiders, and implications for cryptic female choice. — Evolution 48: 711-733. DOI:10.1111/j.1558-5646.1994.tb01356.x.
Eberhard, W. (1996). Female control: sexual selection by cryptic female choice. — Princeton University Press, Princeton, NJ.
Eberhard, W.G. (2023). The functional morphology of species-specific male structures and lack of female coevolution in Lytta (Adicolytta) eucera (Chevrolat 1834) (Coleoptera Meloidae). — Ethol. Ecol. Evol. 35: 584-616. DOI:10.1080/03949370.2022.2152106.
Eberhard, W.G. & Briceño Lobo, R.D. (2009). Experimental modifications imply a stimulatory function for male tsetse fly genitalia, supporting cryptic female choice theory. — J. Evol. Biol. 22: 1516-1525. DOI:10.1111/J.1420-9101.2009.01761.x.
Endler, J.A. (2019). Biotremology and sensory ecology. — In: Biotremology: studying vibrational behavior (Hill, P.S.M., Lakes-Harlan, R., Mazzoni, V., Narins, P.M., Virant-Doberlet, M. & Wessel, A., eds). Springer, Cham, p. 27-41. DOI:10.1007/978-3-030-22293-2_3.
Finn, W.E., Mastro, V.C. & Payne, T.L. (1972). Stridulatory apparatus and analysis of the acoustics of four species of the subfamily Lamiinae (Coleoptera: Cerambycidae). — Ann. Entomol. Soc. Am. 65: 644-647. DOI:10.1093/aesa/65.3.644.
Fockler, C.E. (1972). Some aspects of the behavior and physiology of sexual activity in Trypodendron lineatum Olivier (Coleoptera: Scolytidae). — Master’s thesis, Simon Fraser University. Burnaby, BC.
Gardiner, L.M. (1961). A note on oviposition and larval habits of the milkweed beetle, Tetraopes tetrophthalmus forst. (Coleoptera: Cerambycidae). — Can. Entomol. 93: 678-679. DOI:10.4039/Ent93678-8.
Goldsmith, S.K., Stewart, Z., Adams, S. & Trimble, A. (1996). Body size, male aggression, and male mating success in the cottonwood borer, Plectrodera scalator (Coleoptera: Cerambycidae). — J. Insect Behav. 9: 719-727. DOI:10.1007/BF02213552.
Greenfield, M.D. (2002). Signalers and receivers: mechanisms and evolution of arthropod communication. — Oxford University Press, Oxford.
Harari, A.R., Brockmann, H.J. & Landolt, P.J. (2000). Intrasexual mounting in the beetle Diaprepes abbreviatus (L.). — Proc. Roy. Soc. Lond. Ser. B: Biol. Sci. 267: 2071-2079. DOI:10.1098/rspb.2000.1251.
Hardy, I.C.W. & Briffa, M. (2013). Introduction to Animal Contests. — In: Animal contests. Cambridge University Press, Cambridge, p. 1-4.
Henry, C.S. (1994). Singing and cryptic speciation insects. — Trends Ecol. Evol. 9: 388-392.
Hill, P.S. (2008). Vibrational communication in animals. — Harvard University Press, Cambridge, MA.
Hill, P.S. & Wessel, A. (2016). Biotremology. — Curr. Biol. 26: R187-R191.
Howard, D.R., Schmidt, A.P., Hall, C.L. & Mason, A.C. (2018). Substrate-borne vibration mediates intrasexual agonism in the New Zealand Cook Strait giant weta (Deinacrida rugosa). — J. Insect Behav. 31: 599-615. DOI:10.1007/s10905-018-9700-2.
Jordan, K.H.C., Slowioczek, H., Hoch, H. & Wessel, A. (2022). Sound production in true bugs from the families Acanthosomatidae and Pentatomidae (1958). — In: Biotremology: Physiology, Ecology, and Evolution (Hill, P.S.M., Mazzoni, V., Stritih-Peljhan, N., Virant-Doberlet, M. & Wessel, A., eds). Springer, Cham, p. 21-33. DOI:10.1007/978-3-030-97419-0_2.
Lawrence, W.S. (1986). Male choice and competition in Tetraopes tetraophthalmus: effects of local sex ratio variation. — Behav. Ecol. Sociobiol. 18: 289-296. DOI:10.1007/BF00300006.
Legendre, F., Marting, P. & Cocroft, R. (2011). Competitive masking of vibrational signals during mate searching in a treehopper. — Anim. Behav. 83: 361-368. DOI:10.1016/j.anbehav.2011.11.003.
Leith, N.T., Macchiano, A., Moore, M.P. & Fowler-Finn, K.D. (2021). Temperature impacts all behavioral interactions during insect and arachnid reproduction. — Curr. Opin. Insect Sci. 45: 106-114. DOI:10.1016/j.cois.2021.03.005.
Li, L., Sun, F., Hu, J.-h., Yin, Y. & Chi, D.-f. (2013). Ultrastructure of stridulating organ of Xylotrechus rusticus L.(Coleoptera, Cerambycidae) and behavioral responses to alarm sounds. — J. For. Res. 24: 547-552. DOI:10.1007/s11676-013-0386-1.
McCauley, D.E. (1982). The behavioural components of sexual selection in the milkweed beetle Tetraopes tetraophthalmus. — Anim. Behav. 30: 23-28. DOI:10.1016/S0003-3472(82)80232-7.
McCauley, D.E., Ott, J.R., Stine, A. & McGrath, S. (1981). Limited dispersal and its effect on population structure in the milkweed beetle Tetraopes tetraophthalmus. — Oecologia 51: 145-150. DOI:10.1007/BF00344664.
McLain, D.K. & Boromisa, R.D. (1987). Male choice, fighting ability, assortative mating and the intensity of sexual selection in the milkweed longhorn beetle, Tetraopes tetraophthalmus (Coleoptera, Cerambycidae). — Behav. Ecol. Sociobiol. 20: 239-246. DOI:10.1007/BF00292176.
Meng, P.S.-l. (2014). Where’s that smell? Trapping and sensory biology of the Asian longhorned beetle, Anoplophora glabripennis. — J. Insect Behav. 29: 61-628.
Muza, K.E. (2018). Invertebrate diversity found on common milkweed (Asclepias syriaca). during Wisconsin growing season. — Thesis, University of Wisconsin-Stout, Stout, WI.
R Core Development Team (2023). R: a language and environment for statistical computing. — R Foundation for Statistical Computing, Vienna.
Reagel, P.F., Ginzel, M.D. & Hanks, L.M. (2002). Aggregation and mate location in the red milkweed beetle (Coleoptera: Cerambycidae). — J. Insect Behav. 15: 811-830. DOI:10.1023/A:1021127624215.
Roces, F., Tautz, J. & Hölldobler, B. (1993). Stridulation in leaf-cutting ants. — Naturwissenschaften 80: 521-524.
Rodríguez, R.L. & Desjonquères, C. (2019). Vibrational signals: sounds transmitted through solids. — In: Encyclopedia of animal behavior, 2nd ed (Choe, J., ed.). Academic Press, San Diego, CA, p. 508-517.
Simmons, L.W. (1986). Inter-male competition and mating success in the field cricket, Gryllus bimaculatus (de Geer). — Anim. Behav. 34: 567-579. DOI:10.1016/S0003-3472(86)80126-9.
Szentesi, Á., Weber, D.C. & Jermy, T. (2002). Role of visual stimuli in host and mate location of the Colorado potato beetle. — Entomol. Exp. Appl. 105: 141-152. DOI:10.1046/j.1570-7458.2002.01042.x.
Takanashi, T., Fukaya, M., Nakamuta, K., Skals, N. & Nishino, H. (2016). Substrate vibrations mediate behavioral responses via femoral chordotonal organs in a cerambycid beetle. — Zool. Lett. 2: 1-7. DOI:10.1186/s40851-016-0053-4.
Tishechkin, D.Y. (2022). Vibrational communication in insects. — Entomol. Rev. 102: 737-768. DOI:10.1134/S001387382206001X.
Wacker, S. & Amundsen, T. (2014). Mate competition and resource competition are inter-related in sexual selection. — J. Evol. Biol. 27: 466-477. DOI:10.1111/jeb.12314.
Wang, Q., Zeng, W.-Y. & Li, J.-S. (1990). Reproductive behavior of Paraglenea fortunei (Coleoptera: Cerambycidae). — Ann. Entomol. Soc. Am. 83: 860-866. DOI:10.1093/aesa/83.4.860.
Wang, Q., Chen, L.Y., Li, J.S. & Yin, X.M. (1996). Mating behavior of Phytoecia rufiventris Gautier (Coleoptera: Cerambycidae). — J. Insect Behav. 9: 47-60. DOI:10.1007/BF02213723.
West-Eberhard, M.J. (1984). Sexual selection, competitive communication and species-specific signals in insects. — In: Insect Communication (Lewis, T., ed.). Academic Press, San Diego, CA, p. 283-324.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 218 | 217 | 67 |
Full Text Views | 14 | 14 | 5 |
PDF Views & Downloads | 31 | 31 | 12 |
Substrate-borne vibrational communication is commonly used by herbivorous insects to communicate intraspecific information. This form of communication is underexplored and many discoveries of the form and functional significance of these vibrations have yet to be made. Here, we add red milkweed beetles, Tetraopes tetrophthalmus (Coleoptera: Cerambycidae) to the record of arthropods that communicate with these plant-borne vibrations. Red milkweed beetles, like other cerambycids, commonly use stridulation to produce audible squeaks when in stressful situations and can also produce plant-borne vibrations when in contact with conspecifics. These beetles engage in fights for territory which ultimately results in mating opportunities (i.e., contests). We placed beetles into three sex-ratio treatments: male–male (contests), male–female (copulatory courtship), or male–male–female (contests and copulatory courtship). We first describe contests and copulatory courtship behaviours. We then used laser vibrometry and found that red milkweed beetles communicate by producing plant-borne vibrational signals composed of low-frequency rumbles and high-frequency clacks during male–male contests and copulatory courtship. We compared the spectral and temporal features of the vibrations between the two pre-copulatory contexts. We found that vibrational signals were shorter and had a higher fundamental and dominant frequencies when beetles engaged in contests compared to copulatory courtship behaviours. Our results show that these beetles use plant-borne vibrations as context-dependent signals that communicate different information under these two pre-copulatory scenarios. Our data suggests that these context-dependent signals may help beetles gain access to mates and prolong copulation.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 218 | 217 | 67 |
Full Text Views | 14 | 14 | 5 |
PDF Views & Downloads | 31 | 31 | 12 |