Interactions with humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta)

in Behaviour
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Abstract

Time is a valuable but limited resource, and animals’ survival depends on their ability to carefully manage the amount of time they allocate to each daily activity. While existing research has examined the ecological factors affecting animals’ activity budgets, the impact of anthropogenic factors on urban-dwelling animals’ time budgets remains understudied. Here we collected data through focal animal sampling from three groups of rhesus macaques in Northern India to examine whether interactions with humans decrease macaques’ resting and social time (time constraints hypothesis), or whether, by contrast, foraging on anthropogenic food, that is potentially high in calories, leads macaques to spend more time resting and in social interactions (free time hypothesis). We found that macaques who interacted more frequently with people spent significantly less time resting and grooming, supporting the time constraints hypothesis. We argue that these time constraints are likely caused by the unpredictability of human behaviour.

Interactions with humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta)

in Behaviour

Sections

References

  • AltmannJ. (1974). Observational study of behavior: sampling methods. — Behaviour 49: 227-266.

  • AubletJ.-F.Festa-BianchetM.BergeroD. & BassanoB. (2009). Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. — Oecologia 159: 237-247.

    • Search Google Scholar
    • Export Citation
  • BackwellP.R. & PassmoreN.I. (1996). Time constraints and multiple choice criteria in the sampling behaviour and mate choice of the fiddler crab, Uca annulipes. — Behav. Ecol. Sociobiol. 38: 407-416.

    • Search Google Scholar
    • Export Citation
  • BalasubramaniamK.N. & BermanC.M. (2017). Grooming interchange for resource tolerance: biological markets principles within a group of free-ranging rhesus macaques. — Behaviour 154: 1145-1176.

    • Search Google Scholar
    • Export Citation
  • BeisnerB.A.HeagertyA.SeilS.K.BalasubramaniamK.N.AtwillE.R.GuptaB.K.TyagiP.C.ChauhanN.P.BonalB.SinhaP. & McCowanB. (2015). Human–wildlife conflict: proximate predictors of aggression between humans and rhesus macaques in India. — Am. J. Phys. Anthropol. 156: 286-294.

    • Search Google Scholar
    • Export Citation
  • BeisnerB.A.JacksonM.E.CameronA.N. & McCowanB. (2011). Detecting instability in animal social networks: genetic fragmentation is associated with social instability in rhesus macaques. — PLoS ONE 6: e16365.

    • Search Google Scholar
    • Export Citation
  • BlackJ.M.CarboneC.WellsR. & OwenM. (1992). Foraging dynamics in goose flocks: the cost of living on the edge. — Anim. Behav. 44: 41-50.

    • Search Google Scholar
    • Export Citation
  • BrotcorneF.GiraudG.GunstN.FuentesA.WandiaI.N.Beudels-JamarR.C.PoncinP.HuynenM.-C. & LecaJ.-B. (2017). Intergroup variation in robbing and bartering by long-tailed macaques at Uluwatu Temple (Bali, Indonesia). — Primates 58: 1-12.

    • Search Google Scholar
    • Export Citation
  • BurnhamK.P.AndersonD.R. & HuyvaertK.P. (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. — Behav. Ecol. Sociobiol. 65: 23-35.

    • Search Google Scholar
    • Export Citation
  • CarneC.WiperS. & SempleS. (2011). Reciprocation and interchange of grooming, agonistic support, feeding tolerance, and aggression in semi-free-ranging Barbary macaques. — Am. J. Primatol. 73: 1127-1133.

    • Search Google Scholar
    • Export Citation
  • ChapmanC.A.ChapmanL.J. & WranghamR. (1995). Ecological constraints on group size: an analysis of spider monkey and chimpanzee subgroups. — Behav. Ecol. Sociobiol. 36: 59-70.

    • Search Google Scholar
    • Export Citation
  • ChauhanA. & PirtaR. (2010a). Agonistic interactions between humans and two species of monkeys (rhesus monkey Macaca mulatta and hanuman langur Semnopithecus entellus) in Shimla, Himachal Pradesh. — J. Psychol. 1: 9-14.

    • Search Google Scholar
    • Export Citation
  • ChauhanA. & PirtaR. (2010b). Socio-ecology of two species of non-human primates, rhesus monkey (Macaca mulatta) and Hanuman langur (Semnopithecus entellus), in Shimla, Himachal Pradesh. — J. Hum. Ecol. 30: 171-177.

    • Search Google Scholar
    • Export Citation
  • Clutton-BrockT. (2002). Breeding together: kin selection and mutualism in cooperative vertebrates. — Science 296: 69-72.

  • CordsM. (2012). The behavior, ecology, and social evolution of cercopithecine monkeys. — In: The evolution of primate societies (MitaniJ.C.CallJ.KappelerP.M.RyneA.P. & SilkJ.B. eds). University of Chicago PressChicago, IL p. 91-112.

    • Search Google Scholar
    • Export Citation
  • DuchesneM.CôtéS.D. & BarretteC. (2000). Responses of woodland caribou to winter ecotourism in the Charlevoix Biosphere Reserve, Canada. — Biol. Conserv. 96: 311-317.

    • Search Google Scholar
    • Export Citation
  • DunbarR.I.M. (1988). Primate social systems. — Cornell University PressIthaca, NY.

  • DunbarR.I.M. (1991). Functional significance of social grooming in primates. — Folia Primatol. 57: 121-131.

  • DunbarR.I.M. (1992). Time: a hidden constraint on the behavioural ecology of baboons. — Behav. Ecol. Sociobiol. 31: 35-49.

  • DunbarR.I.M. (1996). Determinants of group size in primates: a general model. — Proc. Br. Acad. 88: 33-57.

  • DunbarR.I.M. (2010). The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. — Neurosci. Biobehav. Rev. 34: 260-268.

    • Search Google Scholar
    • Export Citation
  • DunbarR.I.M. & DunbarP. (1988). Maternal time budgets of gelada baboons. — Anim. Behav. 36: 970-980.

  • DunbarR.I.M.Hannah-StewartL. & DunbarP. (2002). Forage quality and the costs of lactation for female gelada baboons. — Anim. Behav. 64: 801-805.

    • Search Google Scholar
    • Export Citation
  • DunbarR.I.M. & ShiJ. (2013). Time as a constraint on the distribution of feral goats at high latitudes. — Oikos 122: 403-410.

  • DunbarR.I.M.KorstjensA.H. & LehmannJ. (2009). Time as an ecological constraint. — Biol. Rev. 84: 413-429.

  • El AlamiA.Van LavierenE.RachidaA. & ChaitA. (2012). Differences in activity budgets and diet between semiprovisioned and wild-feeding groups of the endangered Barbary Macaque (Macaca sylvanus) in the Central High Atlas Mountains, Morocco. — Am. J. Primatol. 74: 210-216.

    • Search Google Scholar
    • Export Citation
  • FoodenJ. (2000). Systematic review of rhesus macaque, Macaca mulatta (Zimmermann, 1780). — Fieldiana Zool. 96: 1-180.

  • FormicaV.A.WoodC.LarsenW.ButterfieldR.AugatM.HougenH. & Brodie IIIE. (2012). Fitness consequences of social network position in a wild population of forked fungus beetles (Bolitotherus cornutus). — J. Evol. Biol. 25: 130-137.

    • Search Google Scholar
    • Export Citation
  • Forthman-QuickD. (1988). Dynamics of exploitation: differential energetic adaptations of two troops of baboons to recent human contact. — In: Ecology and behavior of food enhanced primate groups (FaJ.E. & SouthwickC.H. eds). Alan R. LissNew York, NY p. 25-51.

    • Search Google Scholar
    • Export Citation
  • FrèreC.H.KrützenM.MannJ.ConnorR.C.BejderL. & SherwinW.B. (2010). Social and genetic interactions drive fitness variation in a free-living dolphin population. — Proc. Natl. Acad. Sci. USA 107: 19949-19954.

    • Search Google Scholar
    • Export Citation
  • FuentesA. (2012). Ethnoprimatology and the anthropology of the human-primate interface. — Annu. Rev. Anthropol. 41: 101-117.

  • FujiiK.JinJ.ShevA.BeisnerB.McCowanB. & FushingH. (2015). Perc: using percolation and conductance to find information flow certainty in a direct network. — R Package Version 0.1. R Foundation for Statistical ComputingVienna.

    • Search Google Scholar
    • Export Citation
  • FushingH.McAsseyM.P.BeisnerB. & McCowan B. (2011). Ranking network of a captive rhesus macaque society: a sophisticated corporative kingdom. — PLoS ONE 6: e17817.

    • Search Google Scholar
    • Export Citation
  • GelmanA. (2008). Scaling regression inputs by dividing by two standard deviations. — Stat. Med. 27: 2865-2873.

  • GroverK.E. & ThompsonM.J. (1986). Factors influencing spring feeding site selection by elk in the Elkhorn Mountains, Montana. — J. Wildl. Manage. 50: 466-470.

    • Search Google Scholar
    • Export Citation
  • GumertM.D. & HoM.-H.R. (2008). The trade balance of grooming and its coordination of reciprocation and tolerance in Indonesian long-tailed macaques (Macaca fascicularis). — Primates 49: 176-185.

    • Search Google Scholar
    • Export Citation
  • HemelrijkC.K. (1994). Support for being groomed in long-tailed macaques, Macaca fascicularis. — Anim. Behav. 48: 479-481.

  • HenziS.P. & BarrettL. (1999). The value of grooming to female primates. — Primates 40: 47-59.

  • HerbersJ.M. (1981). Time resources and laziness in animals. — Oecologia 49: 252-262.

  • HodgsonA.J.MarshH. & CorkeronP.J. (2004). Provisioning by tourists affects the behaviour but not the body condition of Mareeba rock-wallabies (Petrogale mareeba). — Wildlife Res. 31: 451-456.

    • Search Google Scholar
    • Export Citation
  • HoebelB.G.AvenaN.M.BocarslyM.E. & RadaP. (2009). A behavioral and circuit model based on sugar addiction in rats. — J. Addict. Med. 3: 33-41.

    • Search Google Scholar
    • Export Citation
  • HsuM.J.KaoC. & AgoramoorthyG. (2008). Interactions between visitors and Formosan macaques (Macaca cyclopis) at Shou-Shan Nature Park, Taiwan. — Am. J. Primatol 71: 214-222.

    • Search Google Scholar
    • Export Citation
  • IlhamK.NurdinJ. & TsujiY. (2018). Effect of provisioning on the temporal variation in the activity budget of urban long-tailed macaques (Macaca fascicularis) in West Sumatra, Indonesia. — Folia Primatol. 89: 347-356.

    • Search Google Scholar
    • Export Citation
  • JamanM.F. & HuffmanM.A. (2013). The effect of urban and rural habitats and resource type on activity budgets of commensal rhesus macaques (Macaca mulatta) in Bangladesh. — Primates 54: 49-59.

    • Search Google Scholar
    • Export Citation
  • JohanssonF. & RoweL. (1999). Life history and behavioral responses to time constraints in a damselfly. — Ecology 80: 1242-1252.

  • JohanssonF.StoksR.RoweL. & De BlockM. (2001). Life history plasticity in a damselfly: effects of combined time and biotic constraints. — Ecology 82: 1857-1869.

    • Search Google Scholar
    • Export Citation
  • KaburuS.S.K. & Newton-FisherN.E. (2015). Egalitarian despots: hierarchy steepness, reciprocity and the grooming-trade model in wild chimpanzees, Pan troglodytes. — Anim. Behav. 99: 61-71.

    • Search Google Scholar
    • Export Citation
  • KaburuS.S.K.MartyP.BeisnerB.BalasubramanianK.Bliss-MoreauE.KawaljitK.MohanL. & McCowanB. (2019). Rates of human–macaque interactions affect grooming behavior among urban-dwelling rhesus macaques (Macaca mulatta). — Am. J Physic. Anthropol. 168: 92-103.

    • Search Google Scholar
    • Export Citation
  • KappelerP.M.CremerS. & NunnC.L. (2015). Sociality and health: impacts of sociality on disease susceptibility and transmission in animal and human societies. — Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 370: 20140116.

    • Search Google Scholar
    • Export Citation
  • KapsalisE. (2004). Matrilineal kinship and primate behavior. — In: Kinship and behavior in primates (ChapaisB. & BermanC. eds). Oxford University PressOxford p. 153-176.

    • Search Google Scholar
    • Export Citation
  • KeysG.C. & DugatkinL.A. (1990). Flock size and position effects on vigilance, aggression, and prey capture in the European starling. — Condor 92: 151-159.

    • Search Google Scholar
    • Export Citation
  • KoiralaS.ChaliseM.K.KatuwalH.B.GaireR.PandeyB. & OgawaH. (2017). Diet and activity of Macaca assamensis in wild and semi-provisioned groups in Shivapuri Nagarjun National Park, Nepal. — Folia Primatol. 88: 57-74.

    • Search Google Scholar
    • Export Citation
  • KorstjensA.H.VerhoeckxI.L. & DunbarR.I.M. (2006). Time as a constraint on group size in spider monkeys. — Behav. Ecol. Sociobiol. 60: 683-694.

    • Search Google Scholar
    • Export Citation
  • KorstjensA.H.LehmannJ. & DunbarR.I.M. (2010). Resting time as an ecological constraint on primate biogeography. — Anim. Behav. 79: 361-374.

    • Search Google Scholar
    • Export Citation
  • KorstjensA.H.LehmannJ. & DunbarR.I.M. (2018). Time constraints do not limit group size in arboreal guenons but do explain community size and distribution patterns. — Int. J. Primatol. 39: 511-531.

    • Search Google Scholar
    • Export Citation
  • LehmannJ.KorstjensA.H. & DunbarR.I.M. (2010). Apes in a changing world — the effects of global warming on the behaviour and distribution of African apes. — J. Biogeogr. 37: 2217-2231.

    • Search Google Scholar
    • Export Citation
  • LewisS.SchreiberE.A.DauntF.SchenkG.WanlessS. & HamerK. (2004). Flexible foraging patterns under different time constraints in tropical boobies. — Anim. Behav. 68: 1331-1337.

    • Search Google Scholar
    • Export Citation
  • LipetzV.E. & BekoffM. (1982). Group size and vigilance in pronghorns. — Z. Tierpsychol. 58: 203-216.

  • LottD.F. & McCoyM. (1995). Asian rhinos Rhinoceros unicornis on the run? Impact of tourist visits on one population. — Biol. Conserv. 73: 23-26.

    • Search Google Scholar
    • Export Citation
  • MajoloB.van LavierenE.MaréchalL.MacLarnonA.MarvinG.QarroM. & SempleS. (2013). Out of Asia: the singular case of the Barbary macaque. — In: The macaque connection (RadhakrishnaS.HuffmanM.A. & SinhaA. eds). SpringerNew York p. 167-183.

    • Search Google Scholar
    • Export Citation
  • MaréchalL.MacLarnonA.MajoloB. & SempleS. (2016). Primates’ behavioural responses to tourists: evidence for a trade-off between potential risks and benefits. — Sci. Rep. 6: 32465.

    • Search Google Scholar
    • Export Citation
  • MartyP.BeisnerB.KaburuS.S.K.BalasubramaniamK.Bliss-MoreauE.RuppertN.SahS.AhmadI.ArletM.AtwillE. & McCowanB. (2019). Time constraints and stress imposed by human presence alter social behaviour in urban long-tailed macaques. — Anim. Behav. 150: 157-165.

    • Search Google Scholar
    • Export Citation
  • McCarthyM.S.MathesonM.D.LesterJ.D.SheeranL.K.LiJ.H. & WagnerR.S. (2009). Sequences of Tibetan macaque (Macaca thibetana) and tourist behaviors at Mt. Huangshan, China. — Primate Conserv. 24: 145-152.

    • Search Google Scholar
    • Export Citation
  • McCowanB.BeisnerB. & HannibalD. (2018). Social management of laboratory rhesus macaques housed in large groups using a network approach: a review. — Behav Processes 156: 77-82.

    • Search Google Scholar
    • Export Citation
  • McFarlandR.BarrettL.BonerR.FreemanN.J. & HenziS.P. (2014). Behavioral flexibility of vervet monkeys in response to climatic and social variability. — Am. J. Phys. Anthropol. 154: 357-364.

    • Search Google Scholar
    • Export Citation
  • McLennanM.R. & GanzhornJ.U. (2017). Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. — Int. J. Primatol. 38: 122-150.

    • Search Google Scholar
    • Export Citation
  • MenonS. & PoirierF.E. (1996). Lion-tailed macaques (Macaca silenus) in a disturbed forest fragment: activity patterns and time budget. — Int. J. Primatol. 17: 969-985.

    • Search Google Scholar
    • Export Citation
  • MurtonR.IsaacsonA. & WestwoodN. (1971). The significance of gregarious feeding behaviour and adrenal stress in a population of wood-pigeons Columba palumbus. — J. Zool. 165: 53-84.

    • Search Google Scholar
    • Export Citation
  • Owen-SmithN. (1998). How high ambient temperature affects the daily activity and foraging time of a subtropical ungulate, the greater kudu (Tragelaphus strepsiceros). — J. Zool. 246: 183-192.

    • Search Google Scholar
    • Export Citation
  • PetitD.R. & BildsteinK.L. (1987). Effect of group size and location within the group on the foraging behavior of white ibises. — Condor 89: 602-609.

    • Search Google Scholar
    • Export Citation
  • PollardK.A. & BlumsteinD.T. (2008). Time allocation and the evolution of group size. — Anim. Behav. 76: 1683-1699.

  • PristonN.E. & McLennanM.R. (2013). Managing humans, managing macaques: human–macaque conflict in Asia and Africa. — In: The macaque connection: cooperation and conflict between humans and macaques (RadhakrishnaS.HuffmanM.A. & SinhaA. eds). SpringerNew York, NY p. 225-250.

    • Search Google Scholar
    • Export Citation
  • PuseyA. & PackerC. (1987). Dispersal and philopatry. — In: Primate societies (SmutsB.B.CheneyD.L.SeyfarthR.M.WranghamR.W. & StruhsakerT.T. eds). Chicago University PressChicago, IL p. 250-266.

    • Search Google Scholar
    • Export Citation
  • RhineR.J.CoxR.L. & CostelloM.B. (1989). A twenty-year study of long-term and temporary dominance relations among stumptailed macaques (Macaca arctoides). — Am. J. Primatol. 19: 69-82.

    • Search Google Scholar
    • Export Citation
  • RichardsS.A.WhittinghamM.J. & StephensP.A. (2011). Model selection and model averaging in behavioural ecology: the utility of the IT-AIC framework. — Behav. Ecol. Sociobiol. 65: 77-89.

    • Search Google Scholar
    • Export Citation
  • RileyE.P. (2007). Flexibility in diet and activity patterns of Macaca tonkeana in response to anthropogenic habitat alteration. — Int. J. Primatol. 28: 107-133.

    • Search Google Scholar
    • Export Citation
  • RileyE.P.TolbertB. & FaridaW.R. (2013). Nutritional content explains the attractiveness of cacao to crop raiding Tonkean macaques. — Curr. Zool. 59: 160-169.

    • Search Google Scholar
    • Export Citation
  • RodeK.D.ChiyoP.I.ChapmanC.A. & McDowellL.R. (2006). Nutritional ecology of elephants in Kibale National Park, Uganda, and its relationship with crop-raiding behaviour. — J. Trop. Ecol. 22: 441-449.

    • Search Google Scholar
    • Export Citation
  • RoserM. & Ortiz-OspinaE. (2018). World Population Growth. — Available online at https://ourworldindata.org/world-population-growth.

  • SajT.L. (1998). The ecology and behavior of vervet monkeys in a human-modified environment. MA thesisUniversity of CalgaryCalgary, AB.

    • Search Google Scholar
    • Export Citation
  • SajT.L.SicotteP. & PatersonJ.D. (1999). Influence of human food consumption on the time budget of vervets. — Int. J. Primatol. 20: 977-994.

    • Search Google Scholar
    • Export Citation
  • SchinoG.di SorrentinoE.P. & TiddiB. (2007). Grooming and coalitions in Japanese macaques (Macaca fuscata): partner choice and the time frame reciprocation. — J. Comp. Psychol. 121: 181.

    • Search Google Scholar
    • Export Citation
  • SiikamäkiP. (1998). Limitation of reproductive success by food availability and breeding time in pied flycatchers. — Ecology 79: 1789-1796.

    • Search Google Scholar
    • Export Citation
  • SilkJ.B.AlbertsS.C. & AltmannJ. (2003). Social bonds of female baboons enhance infant survival. — Science 302: 1231-1234.

  • Snyder-MacklerN.KohnJ.N.BarreiroL.B.JohnsonZ.P.WilsonM.E. & TungJ. (2016). Social status drives social relationships in groups of unrelated female rhesus macaques. — Anim. Behav. 111: 307-317.

    • Search Google Scholar
    • Export Citation
  • SouthwickC.H. & SiddiqiF. (2011). India’s rhesus population: protection versus conservation management. — In: Monkeys on the edge: ecology and management of long-tailed macaques and their interface with humans (GumertD.FuentesA. & Jones-EngelL. eds). Cambridge University PressCambridge p. 275-292.

    • Search Google Scholar
    • Export Citation
  • SzottI.D.PretoriusY. & KoyamaN.F. (in press). Behavioural changes in African elephants in response to wildlife tourism. — J. Zool.

  • ThatcherH.R.DownsC.T. & KoyamaN.F. (2019). Anthropogenic influences on the time budgets of urban vervet monkeys. — Landsc. Urban Plan 181: 38-44.

    • Search Google Scholar
    • Export Citation
  • TiddiB.AureliF.Polizzi di SorrentinoE.JansonC.H. & SchinoG. (2011). Grooming for tolerance? Two mechanisms of exchange in wild tufted capuchin monkeys. — Behav. Ecol. 22: 663-669.

    • Search Google Scholar
    • Export Citation
  • VenturaR.MajoloB.KoyamaN.F.HardieS. & SchinoG. (2006). Reciprocation and interchange in wild Japanese macaques: grooming, cofeeding, and agonistic support. — Am. J. Primatol. 68: 1138-1149.

    • Search Google Scholar
    • Export Citation
  • VitousekP.M.MooneyH.A.LubchencoJ. & MelilloJ.M. (1997). Human domination of Earth’s ecosystems. — Science 277: 494-499.

  • XiaD.P.LiJ.GarberP.A.SunL.ZhuY. & SunB. (2012). Grooming reciprocity in female Tibetan macaques Macaca thibetana. — Am. J. Primatol. 74: 569-579.

    • Search Google Scholar
    • Export Citation
  • XiaD.P.LiJ.H.GarberP.A.MathesonM.D.SunB.H. & ZhuY. (2013). Grooming reciprocity in male Tibetan macaques. — Am. J. Primatol. 75: 1009-1020.

    • Search Google Scholar
    • Export Citation
  • YoungC.MajoloB.HeistermannM.SchülkeO. & OstnerJ. (2014). Responses to social and environmental stress are attenuated by strong male bonds in wild macaques. — Proc. Natl. Acad. Sci. USA 111: 18195-18200.

    • Search Google Scholar
    • Export Citation
  • KaburuS.S.K.MartyP.BeisnerB.BalasubramanianK.Bliss-MoreauE.KawaljitK.MohanL. & McCowanB. (2019). Rates of human–macaque interactions affect grooming behaviour among urban-dwelling rhesus macaques (Macaca mulatta). — Am. J. Phys. Anthropol. 168: 92-103.

    • Search Google Scholar
    • Export Citation
  • de WaalF.B. & LuttrellL.M. (1985). The formal hierarchy of rhesus macaques: an investigation of the bared-teeth display. — Am. J. Primatol. 9: 73-85.

    • Search Google Scholar
    • Export Citation

Figures

  • View in gallery

    Figure summarizing the two models (time constraints and free time) tested.

  • View in gallery

    Summary of the outcome variables and predictors included in the GLMM models.

  • View in gallery

    Summary of the rates of human–macaque interactions and macaques’ activities.

  • View in gallery

    Results of the best-fit negative binomial GLMM testing the effect of human–macaque interactions, rank and sex on monitoring time.

  • View in gallery

    Rates of monitoring plotted against total rates of human–macaque interactions for each sex separately.

  • View in gallery

    Rates of monitoring plotted against total rates of human–macaque interactions for each rank category (high, medium, low).

  • View in gallery

    Results of the best-fit negative binomial GLMM testing the effect of human–macaque interactions, rank and sex on resting time.

  • View in gallery

    Rates of resting plotted against total rates of human–macaque interactions for each rank category (high, medium, low).

  • View in gallery

    Rates of resting plotted against total rates of human provisioning.

  • View in gallery

    Results of the best-fit negative binomial GLMM testing the effect of monitoring, human–macaque interactions, rank and sex on grooming time.

  • View in gallery

    Rates of grooming plotted against total rates of human–macaque interactions for both males and females for each rank category (high, medium, low).

  • View in gallery

    Results of the best-fit negative binomial GLMM testing the effect of foraging on anthropogenic food, rank and sex on resting and grooming time.

  • View in gallery

    Ethogram for human–macaque interactions (for an extended version of the ethogram, see Kaburu et al., 2019).

  • View in gallery

    IT-based model selection.

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

  • View in gallery

    (Continued.)

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 127 127 125
Full Text Views 11 11 11
PDF Downloads 5 5 5
EPUB Downloads 0 0 0