The gut microbiome can metabolise food components, such as dietary fibres and various phytochemicals; and the microbiome can also synthesise some nutrients, for example B vitamins. The metabolites produced by bacteria and other micro-organisms in the colon can have implications for health and disease risk. Some of these metabolites are epigenetically active, and can contribute to changes in the chemical modification and structure of chromatin by affecting the activity and expression of epigenetically-active enzymes, for example histone deacetylases and DNA methyltransferases. The epigenetic activity of such gut microbiome metabolites is reviewed herein.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Aitbaev, K.A., Murkamilov, I.T. and Fomin, V.V., 2019. Molecular mechanisms of aging: the role of oxidative stress and epigenetic modifications. Advances in Gerontology 9: 417-425.
'Molecular mechanisms of aging: the role of oxidative stress and epigenetic modifications ' () 9 Advances in Gerontology : 417 -425.
AlHilli, M.M. and Bae-Jump, V., 2020. Diet and gut microbiome interactions in gynecologic cancer. Gynecologic Oncology 159: 299-308.
'Diet and gut microbiome interactions in gynecologic cancer ' () 159 Gynecologic Oncology : 299 -308.
Amatullah, H. and Jeffrey, K.L., 2020. Epigenome-metabolome-microbiome axis in health and IBD. Current Opinion in Microbiology 56: 97-108.
'Epigenome-metabolome-microbiome axis in health and IBD ' () 56 Current Opinion in Microbiology : 97 -108.
Bishop, K.S., Xu, H. and Marlow, G., 2017. Epigenetic regulation of gene expression induced by butyrate in colorectal cancer: Involvement of microRNA. Genetics and Epigenetics 9: 1179237X17729900. https://doi.org/10.1177/1179237X17729900
Blake, G.E.T., Zhao, X., Yung, H., Burton, G.J., Ferguson-Smith, A.C., Hamilton, R.S. and Watson, E.D., 2020. Disruption of folate metabolism causes germline epigenetic instability and distinguishes HIRA as a biomarker of maternal transgenerational epigenetic inheritance. BioRxiv https://doi.org/10.1101/2020.05.21.109256
Bosviel, R., Durif, J., Déchelotte, P., Bignon, Y.J. and Bernard-Gallon, D., 2012. Epigenetic modulation of BRCA1 and BRCA2 gene expression by equol in breast cancer cell lines. British Journal of Nutrition 108: 1187-1193.
'Epigenetic modulation of BRCA1 and BRCA2 gene expression by equol in breast cancer cell lines ' () 108 British Journal of Nutrition : 1187 -1193.
Burdge, G.C., Hoile, S.P., Uller, T., Thomas, N.A., Gluckman, P.D., Hanson, M.A. and Lillycrop, K.A., 2011, Progressive transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS ONE 6: e0028282. https://doi.org/10.1371/journal.pone.0028282
Cinquina, V., Calvigioni, D., Farlik, M., Halbritter, F., Fife-Gernedl, V., Shirran, S.L., Fuszard, M.A., Botting, C.H., Poullet, P., Piscitelli, F., Máté, Z., Szabó, G., Yanagawa, Y., Kasper, S., Di Marzo, V., Mackie, K., McBain, C.J., Bock, C., Keimpema, E. and Harkany, T., 2020. Lifelong epigenetic programming of cortical architecture by maternal ‘Western’ diet during pregnancy. Molecular Psychiatry 25: 22-36. https://doi.org/10.1038/s41380-019-0580-4
Coe, G.L., Pinkham, N.V., Celis, A.I., Johnson, C., DuBois, J.L., and Walk, S.T., 2020. Dynamic gut microbiome changes in response to low-iron challenge. Appied and Environmental Microbiology 87: e02307-20.
'Dynamic gut microbiome changes in response to low-iron challenge ' () 87 Appied and Environmental Microbiology : e02307 -20.
Dalile, B., Van Oudenhove, L., Vervliet, B. and Verbeke, K., 2019. The role of short-chain fatty acids in microbiota-gut-brain communication. Nature Reviews Gastroenterology and Hepatology 16: 461-478.
'The role of short-chain fatty acids in microbiota-gut-brain communication ' () 16 Nature Reviews Gastroenterology and Hepatology : 461 -478.
Davidson, L.A., Wang, N., Shah, M.S., Lupton, J.R., Ivanov, I. and Chapkin, R.S., 2009. n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogen 30: 2077-2084.
'n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon ' () 30 Carcinogen : 2077 -2084.
Dimri, M., Bommi, P.V., Sahasrabuddhe, A.A., Khandekar, J.D. and Dimri, G.P., 2010. Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells. Carcinogen 31: 489-495.
'Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells ' () 31 Carcinogen : 489 -495.
Edlow, A.G., Guedj, F., Sverdlov, D., Pennings, J.L.A. and Bianchi, D.W., 2019. Significant Effects of maternal diet during pregnancy on the murine fetal brain transcriptome and offspring behavior. Frontiers in Neuroscience 13: 1335. https://doi.org/10.3389/fnins.2019.01335
Felizardo, R.J.F., de Almeida, D.C., Pereira, R.L., Watanabe, I.K.M., Doimo, N.T.S., Ribeiro, W.R., Cenedeze, M.A., Hiyane, M.I., Amano, M.T., Braga, T.T., Ferreira, C.M., Parmigiani, R.B., Andrade-Oliveira, V., Volpini, R.A., Vinolo, M.A.R., Mariño, E., Robert, R., Mackay, C.R. and Camara, N.O.S., 2019. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic- and GPR109a-mediated mechanisms. FASEB Journal 33: 11894-11908. https://doi.org/10.1096/fj.201901080R
Gerhauser, C., 2018. Impact of dietary gut microbial metabolites on the epigenome. Philosophical Transactions of the Royal Society B: Biological Sciences 373: 20170359. https://doi.org/10.1098/rstb.2017.0359
Ghoshal, K., Li, X., Datta, J., Bai, S., Pogribny, I. and Pogribny, M., 2006. A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats. Journal of Nutrition 136: 1522-1527.
'A folate- and methyl-deficient diet alters the expression of DNA methyltransferases and methyl CpG binding proteins involved in epigenetic gene silencing in livers of F344 rats ' () 136 Journal of Nutrition : 1522 -1527.
Guo, W., Liu, J., Sun, J., Gong, Q., Ma, H., Kan, X., Cao, Y., Wang, J. and Fu, S., 2020. Butyrate alleviates oxidative stress by regulating NRF2 nuclear accumulation and H3K9/14 acetylation via GPR109A in bovine mammary epithelial cells and mammary glands. Free Radical Biology and Medicine 152: 728-742.
'Butyrate alleviates oxidative stress by regulating NRF2 nuclear accumulation and H3K9/14 acetylation via GPR109A in bovine mammary epithelial cells and mammary glands ' () 152 Free Radical Biology and Medicine : 728 -742.
Gurry, T. and Scapozza, L., 2020. Exploiting the gut microbiota’s fermentation capabilities towards disease prevention. Journal of Pharmaceutical and Biomedical Analysis 189: 113469. https://doi.org/10.1016/j.jpba.2020.113469
Hahn, O., Stubbs, T.M., Reik, W., Grönke, S., Beyer, A., and Partridge, L., 2018. Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genetics 14: 11. https://doi.org/10.1371/journal.pgen.1007766
Healy, S., Heightman, T.D., Hohmann, L., Schriemer, D. and Gravel, R. A., 2009. Nonenzymatic biotinylation of histone H2A. Protein Science 18: 31.
'Nonenzymatic biotinylation of histone H2A ' () 18 Protein Science : 31.
Hymes, J., Fleischhauer, K. and Wolf, B., 1995. Biotinylation of histones by human serum biotinidase: Assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency. Biochemical and Molecular Medicine 56: 76-83.
'Biotinylation of histones by human serum biotinidase: Assessment of biotinyl-transferase activity in sera from normal individuals and children with biotinidase deficiency ' () 56 Biochemical and Molecular Medicine : 76 -83.
Kang, I., Buckner, T., Shay, N.F., Gu, L. and Chung, S., 2016. Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms. Advances in Nutrition 75: 961-972.
'Improvements in metabolic health with consumption of ellagic acid and subsequent conversion into urolithins: Evidence and mechanisms ' () 75 Advances in Nutrition : 961 -972.
Kang, J.S., Nam, L.B., Yoo, O.K. and Keum, Y.S., 2020. Molecular mechanisms and systemic targeting of NRF2 dysregulation in cancer. Biochemical Pharmacology 177: 114002. https://doi.org/10.1016/j.bcp.2020.114002
Krautkramer, K.A., Dhillon, R.S., Denu, J.M. and Carey, H.V., 2017. Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Translational Research 189: 30-50. https://doi.org/10.1016/j.trsl.2017.08.005
Lea, M.A., Randolph, V.M., Lee, J.E. and DesBordes, C., 2001. Induction of histone acetylation in mouse erythroleukemia cells by some organosulfur compounds including allyl isothiocyanate. International Journal of Cancer 92: 784-789.
'Induction of histone acetylation in mouse erythroleukemia cells by some organosulfur compounds including allyl isothiocyanate ' () 92 International Journal of Cancer : 784 -789.
Lee, H.S., 2019. The interaction between gut microbiome and nutrients on development of human disease through epigenetic mechanisms. Genomics and Informatics 17: e24. https://doi.org/10.5808/GI.2019.17.3.e24
Lee, W.J. and Hase, K., 2014. Gut microbiota-generated metabolites in animal health and disease. Nature Chemical Biology 10: 416-424.
'Gut microbiota-generated metabolites in animal health and disease ' () 10 Nature Chemical Biology : 416 -424.
Leylabadlo, H.E., Ghotaslou, R., Feizabadi, M.M., Farajnia, S., Moaddab, S. Y., Ganbarov, K., Khodadadi, E., Tanomand, A., Sheykhsaran, E., Yousefi, B. and Kafil, H.S., 2020. The critical role of Faecalibacterium prausnitzii in human health: an overview. Microbial Pathogenesis 149: 104344. https://doi.org/10.1016/j.micpath.2020.104344
Lio, C.-W.J., Shukla, V., Samaniego-Castruita, D., González-Avalos, E., Chakraborty, A., Yue, X., Schatz, D.G., Ay, F. and Rao, A., 2019. TET enzymes augment activation-induced deaminase (AID) expression via 5-hydroxymethylcytosine modifications at the Aicda superenhancer. Science Immunology 4: eaau7523. https://doi.org/10.1126/sciimmunol.aau7523
Liu, L., Li, Y. and Tollefsbol, T.O., 2008. Gene-environment interactions and epigenetic basis of human diseases. Current Issues in Molecular Biology 10: 25-36.
'Gene-environment interactions and epigenetic basis of human diseases ' () 10 Current Issues in Molecular Biology : 25 -36.
Lu, D., Huang, Y., Kong, Y., Tao, T. and Zhu, X., 2020. Gut microecology: why our microbes could be key to our health. Biomedicine and Pharmacotherapy 131: 110784 https://doi.org/10.1016/j.biopha.2020.110784
Luu, M., Pautz, S., Kohl, V., Singh, R., Romero, R., Lucas, S., Hofmann, J., Raifer, H., Vachharajani, N., Carrascosa, L.C., Lamp, B., Nist, A., Stiewe, T., Shaul, Y., Adhikary, T., Zaiss, M.M., Lauth, M., Steinhoff, U. and Visekruna, A., 2019. The short-chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic-epigenetic crosstalk in lymphocytes. Nature Communications 10: 760. https://doi.org/10.1038/s41467-019-08711-2
Madsen, C.T., Sylvestersen, K.B., Young, C., Larsen, S.C., Poulsen, J.W., Andersen, M.A., Palmqvist, E.A., Hey-Mogensen, M., Jensen, P.B., Treebak, J.T., Lisby, M. and Nielsen, M.L., 2015. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p. Nature Communications 6: 7726. https://doi.org/10.1038/ncomms8726
Magnúsdóttir, S., Ravcheev, D., De Crécy-Lagard, V. and Thiele, I., 2015. Systematic genome assessment of B-vitamin biosynthesis suggests cooperation among gut microbes. Frontiers in Genetics 6: 148. https://doi.org/10.3389/fgene.2015.00148
Maioli, T.U., Borras-Nogues, E., Torres, L., Barbosa, S.C., Martins, V.D., Langella, P., Azevedo, V.A. and Chatel, J.-M., 2021. Possible benefits of faecalibacterium prausnitzii for obesity-associated gut disorders. Frontiers in Pharmacology 12: 740636. https://doi.org/10.3389/fphar.2021.740636
Masuelli, L., Benvenuto, M., Focaccetti, C., Ciuffa, S., Fazi, S., Bei, A., Miele, M.T., Piredda, L., Manzari, V., Modesti, A. and Bei, R., 2021. Targeting the tumor immune microenvironment with “nutraceuticals”: From bench to clinical trials. Pharmacology and Therapeutics 219: 107700. https://doi.org/10.1016/j.pharmthera.2020.107700
Meeran, S.M., Patel, S.N. and Tollefsbol, T.O., 2010. Sulforaphane causes epigenetic repression of hTERT expression in human breast cancer cell lines. PLoS ONE 57: e0011457. https://doi.org/10.1371/journal.pone.0011457
Myzak, M.C., Karplus, P.A., Chung, F.L. and Dashwood, R.H., 2004. A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Research 64: 5767-5774.
'A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase ' () 64 Cancer Research : 5767 -5774.
Navarro, S.L., Li, F. and Lampe, J.W., 2011. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food and Function 2: 579-587.
'Mechanisms of action of isothiocyanates in cancer chemoprevention: an update ' () 2 Food and Function : 579 -587.
Neri-Numa, I.A. and Pastore, G.M., 2020. Novel insights into prebiotic properties on human health: A review. Food Research International 131: 108973. https://doi.org/10.1016/j.foodres.2019.108973
Pacini, G., Paolino, S., Andreoli, L., Tincani, A., Gerosa, M., Caporali, R., Iagnocco, A., Ospelt, C., Smith, V. and Cutolo, M., 2020. Epigenetics, pregnancy and autoimmune rheumatic diseases. Autoimmunity Reviews 19: 102685. https://doi.org/10.1016/j.autrev.2020.102685
Paluszczak, J., Krajka-Kuzniak, V. and Baer-Dubowska, W., 2010. The effect of dietary polyphenols on the epigenetic regulation of gene expression in MCF7 breast cancer cells. Toxicology Letters 19: 119-125. https://doi.org/10.1016/j.toxlet.2009.10.010
Patnala, R., Arumugam, T.V., Gupta, N. and Dheen, S.T., 2017. HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke. Molecular Neurobiology 54: 6391-6411.
'HDAC inhibitor sodium butyrate-mediated epigenetic regulation enhances neuroprotective function of microglia during ischemic stroke ' () 54 Molecular Neurobiology : 6391 -6411.
Polari, L., Alam, C.M., Nyström, J.H., Heikkilä, T., Tayyab, M., Baghestani, S. and Toivola, D.M., 2020. Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. International Journal of Biochemistry and Cell Biology 129: 105878. https://doi.org/10.1016/j.biocel.2020.105878
Remely, M. and Haslberger, A.G., 2017. The microbial epigenome in metabolic syndrome. Molecular Aspects of Medicine 54: 71-77. https://doi.org/10.1016/j.mam.2016.09.003
Remely, M., Aumueller, E., Merold, C., Dworzak, S., Hippe, B., Zanner, J., Pointner, A., Brath, H. and Haslberger, A.G., 2014. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity. Gene 537: 85-92. https://doi.org/10.1016/j.gene.2013.11.081
Remely, M., Ferk, F., Sterneder, S., Setayesh, T., Roth, S., Kepcija, T., Noorizadeh, R., Rebhan, I., Greunz, M., Beckmann, J., Wagner, K.-H., Knasmüller, S. and Haslberger, A.G., 2017. EGCG prevents high fat diet-induced changes in gut microbiota, decreases of DNA strand breaks, and changes in expression and DNA methylation of Dnmt1 and MLH1 in C57BL/6J male mice. Oxidative Medicine and Cellular Longevity 2017: 3079148. https://doi.org/10.1155/2017/3079148
Requena, T. and Velasco, M., 2021. The human microbiome in sickness and in health. Revista Clínica Española (English Edition) 221: 233-240. https://doi.org/10.1016/j.rceng.2019.07.018
Rhee, Y., 2016. Flaxseed lignan metabolite enterolactone down-regulated DNA Methyltransferase histone deacetylase and methyl-cpg-binding domain protein expression in murine adipocytes. FASEB Journal 1174: 18
'Flaxseed lignan metabolite enterolactone down-regulated DNA Methyltransferase histone deacetylase and methyl-cpg-binding domain protein expression in murine adipocytes ' () 1174 FASEB Journal : 18.
Said, H.M., 2011. Intestinal absorption of water-soluble vitamins in health and disease. Biochemical Journal 437: 357-372 Sawada, Y. and Gallo, R.L., 2020. Role of epigenetics in the regulation of immune functions of the skin. Journal of Investigative Dermatology 141: 1157-1166. https://doi.org/10.1016/j.jid.2020.10.012
Sharma, M., Li, Y., Stoll, M.L. and Tollefsbol, T.O., 2020. The epigenetic connection between the gut microbiome in obesity and diabetes. Frontiers in Genetics 10: 1329. https://doi.org/10.3389/fgene.2019.01329
Shimazu, T., Hirschey, M.D., Newman, J., He, W., Shirakawa, K., Le Moan, N., Grueter, C.A., Lim, H., Saunders, L.R., Stevens, R.D., Newgard, C.B., Farese, R.V., de Cabo, R., Ulrich, S., Akassoglou, K. and Verdin, E., 2013. Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339: 211-214. https://doi.org/10.1126/science.1227166
Singh, B., Mal, G., Sharma, D., Sharma, R., Antony, C.P. and Kalra, R.S., 2020. Gastrointestinal biotransformation of phytochemicals: Towards futuristic dietary therapeutics and functional foods. Trends in Food Science and Technology 106: 64-77.
'Gastrointestinal biotransformation of phytochemicals: Towards futuristic dietary therapeutics and functional foods ' () 106 Trends in Food Science and Technology : 64 -77.
Spurling, C.C., Suhl, J.A., Boucher, N., Nelson, C.E., Rosenberg, D.W. and Giardina, C., 2008. The short chain fatty acid butyrate induces promoter demethylation and reactivation of RARß2 in colon cancer cells. Nutrition and Cancer 60: 692-702.
'The short chain fatty acid butyrate induces promoter demethylation and reactivation of RARß2 in colon cancer cells ' () 60 Nutrition and Cancer : 692 -702.
Srivas, S., Baghel, M.S., Singh, P. and Thakur, M.K., 2019. Neurodegeneration during aging: the role of oxidative stress through epigenetic modifications. In: Rath, P.C. (ed.) Models, molecules and mechanisms in biogerontology, Springer, Singapore, pp. 43-55. https://doi.org/10.1007/978-981-13-3585-3_3
Stiemsma, L.T. and Turvey, S.E., 2017. Asthma and the microbiome: defining the critical window in early life. Allergy, Asthma and Clinical Immunology 13: 3.
'Asthma and the microbiome: defining the critical window in early life ' () 13 Allergy, Asthma and Clinical Immunology : 3.
Todorov, H., Kollar, B., Bayer, F., Brandão, I., Mann, A., Mohr, J., Pontarollo, G., Formes, H., Stauber, R., Kittner, J.M., Endres, K., Watzer, B., Nockher, W.A., Sommer, F., Gerber, S. and Reinhardt, C., 2020. α-Linolenic acid-rich diet influences microbiota composition and villus morphology of the mouse small intestine. Nutrients 12: 732.
'α-Linolenic acid-rich diet influences microbiota composition and villus morphology of the mouse small intestine ' () 12 Nutrients : 732.
Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., Egholm, M., Henrissat, B., Heath, A.C., Knight, R. and Gordon, J.I., 2009. A core gut microbiome in obese and lean twins. Nature 457: 480-484. https://doi.org/10.1038/nature07540
Uekawa, A., Katsushima, K., Ogata, A., Kawata, T., Maeda, N., Kobayashi, K.I., Maekawa, A., Tadokoro, T. and Yamamoto, Y., 2009. Change of epigenetic control of cystathionine beta-synthase gene expression through dietary vitamin B12 is not recovered by methionine supplementation. Lifestyle Genomics 2: 29-36. https://doi.org/10.1159/000165374
Vähämiko, S., Laiho, A., Lund, R., Isolauri, E., Salminen, S. and Laitinen, K., 2019. The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children. European Journal of Nutrition 581: 367-377
'The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children ' () 581 European Journal of Nutrition : 367 -377.
Vieira, A., 2011. Epigenetic regulation by retinoids. In: Niculescu, M.D. and Haggarty, P. (eds.) Nutrition in epigenetics. Wiley-Blackwell, Hoboken, NJ, USA, pp. 241-248.
'Epigenetic regulation by retinoids ', () 241 -248.
Vinciguerra, M., Masotti, A. and Alisi, A., 2020. Editorial: role of epigenetic modifications on diet-induced metabolic diseases. Frontiers in Genetics 11: 825. https://doi.org/10.3389/fgene.2020.00825
Vuong, H.E., Pronovost, G.N., Williams, D.W., Coley, E.J.L., Siegler, E.L., Qiu, A., Kazantsev, M., Wilson, C.J., Rendon, T. and Hsiao, E.Y., 2020. The maternal microbiome modulates fetal neurodevelopment in mice. Nature 586: 281-286. https://doi.org/10.1038/s41586-020-2745-3
Wang, J., Blaze, J., Haghighi, F., Kim-Schulze, S., Raval, U., Trageser, K.J. and Pasinetti, G.M., 2020. Characterization of 3(3,4-dihydroxy-phenyl) propionic acid as a novel microbiome-derived epigenetic modifier in attenuation of immune inflammatory response in human monocytes. Molecular Immunology 125: 172-177. https://doi.org/10.1016/j.molimm.2020.07.003
Wu, G., Zhang, X. and Gao, F., 2021. The epigenetic landscape of exercise in cardiac health and disease. Journal of Sport and Health Science 10: 648-659. https://doi.org/10.1016/j.jshs.2020.12.003
Wu, R., Li, S., Hudlikar, R., Wang, L., Shannar, A., Peter, R., Chou, P.J., Kuo, H.-C.D., Liu, Z. and Kong, A.-N., 2022. Redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals. Free Radical Biology and Medicine 179: 328-336. https://doi.org/10.1016/j.freeradbiomed.2020.12.007
Xia, B., Pang, L., Zhuang, Z.X. and Liu, J.J., 2016. Biotin-mediated epigenetic modifications: Potential defense against the carcinogenicity of benzo[a]pyrene. Toxicology Letters 241: 216-224.
'Biotin-mediated epigenetic modifications: Potential defense against the carcinogenicity of benzo[a]pyrene ' () 241 Toxicology Letters : 216 -224.
Yoshii, K., Hosomi, K., Sawane, K. and Kunisawa, J., 2019. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Frontiers in Nutrition 6: 48.
'Metabolism of dietary and microbial vitamin B family in the regulation of host immunity ' () 6 Frontiers in Nutrition : 48.
Zhao, Y., Wang, C. and Goel, A., 2021. Role of gut microbiota in epigenetic regulation of colorectal cancer. Biochimica et Biophysica Acta 1875: 188490. https://doi.org/10.1016/j.bbcan.2020.188490
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 490 | 397 | 57 |
Full Text Views | 26 | 12 | 0 |
PDF Views & Downloads | 55 | 28 | 0 |
The gut microbiome can metabolise food components, such as dietary fibres and various phytochemicals; and the microbiome can also synthesise some nutrients, for example B vitamins. The metabolites produced by bacteria and other micro-organisms in the colon can have implications for health and disease risk. Some of these metabolites are epigenetically active, and can contribute to changes in the chemical modification and structure of chromatin by affecting the activity and expression of epigenetically-active enzymes, for example histone deacetylases and DNA methyltransferases. The epigenetic activity of such gut microbiome metabolites is reviewed herein.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 490 | 397 | 57 |
Full Text Views | 26 | 12 | 0 |
PDF Views & Downloads | 55 | 28 | 0 |