Recently there is much debate in the scientific community over the impact of the food matrix on prebiotic efficacy of inulin-type fructans. Previous studies suggest that prebiotic selectivity of inulin-type fructans towards bifidobacteria is unaffected by the food matrix. Due to differences in study design, definitive conclusions cannot be drawn from these findings with any degree of certainty. In this randomised trial, we aimed to determine the effects that different food matrices had on the prebiotic efficacy of inulin-type fructans following a standardised 10-day, 4-arm, parallel, randomised protocol with inulin either in pure form or incorporated into shortbread biscuits, milk chocolate or a rice drink. Similar increases in Bifidobacterium counts were documented across all four interventions using both fluorescence in situ hybridisation (pure inulin: +0.63; shortbread: +0.59; milk chocolate: +0.65 and rice drink: +0.71 (log10 cells/g wet faeces) and 16S rRNA sequencing quantitative microbiome profiling data (pure inulin: +1.21 × 109; shortbread: +1.47 × 109; milk chocolate: +8.59 × 108 and rice drink: +1.04 × 109 (cells/g wet faeces) (all
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Aguilera, J.M., 2019. The food matrix: implications in processing, nutrition and health. Critical Reviews in Food Science and Nutrition 59: 3612-3629. https://doi.org/10.1080/10408398.2018.1502743
Ahmed, W. and Rashid, S., 2019. Functional and therapeutic potential of inulin: a comprehensive review. Critical Reviews in Food Science and Nutrition 59: 1-13. https://doi.org/10.1080/10408398.2017.1355775
Amann, R.I., Binder, B.J., Olson, R.J., Chisholm, S.W., Devereux, R. and Stahl, D.A., 1990. Combination of 16s rRNA-targeted oligonucleotide probes with flow-cytometry for analyzing mixed microbial-populations. Applied and Environmental Microbiology 56: 1919-1925. https://doi.org/10.1128/aem.56.6.1919-1925.1990
Azpiroz, F., Molne, L., Mendez, S., Nieto, A., Manichanh, C., Mego, M., Accarino, A., Santos, J., Sailer, M., Theis, S. and Guarner, F., 2017. Effect of chicory-derived inulin on abdominal sensations and bowel motor function. Journal of Clinical Gastroenterology 51: 619-625. https://doi.org/10.1097/mcg.0000000000000723
Brighenti, F., Casiraghi, M.C., Canzi, E. and Ferrari, A., 1999. Effect of consumption of a ready-to-eat breakfast cereal containing inulin on the intestinal milieu and blood lipids in healthy male volunteers. European Journal of Clinical Nutrition 53: 726-733. https://doi.org/10.1038/sj.ejcn.1600841
Buddington, R.K., Kapadia, C., Neumer, F. and Theis, S., 2017. Oligofructose provides laxation for irregularity associated with low fiber intake. Nutrients 9: 1372. https://doi.org/10.3390/nu9121372
Canani, R.B., Di Costanzo, M., Leone, L., Pedata, M., Meli, R. and Calignano, A., 2011. Potential beneficial effects of butyrate in intestinal and extrainitestinal diseases. World Journal of Gastroenterology 17: 1519-1528. https://doi.org/10.3748/wjg.v17.i12.1519
Costabile, A., Klinder, A., Fava, F., Napolitano, A., Fogliano, V., Leonard, C., Gibson, G.R. and Tuohy, K.M., 2008. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. British Journal of Nutrition 99: 110-120. https://doi.org/10.1017/s0007114507793923
Costabile, A., Kolida, S., Klinder, A., Gietl, E., Bauerlein, M., Frohberg, C., Landschutze, V. and Gibson, G.R., 2010. A double-blind, placebo-controlled, cross-over study to establish the bifidogenic effect of a very-long-chain inulin extracted from globe artichoke (Cynara scolymus) in healthy human subjects. British Journal of Nutrition 104: 1007-1017. https://doi.org/10.1017/s0007114510001571
Daims, H., Bruhl, A., Amann, R., Schleifer, K.H. and Wagner, M., 1999. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology 22: 434-444. https://doi.org/10.1016/s0723-2020(99)80053-8
D’Archivio, M., Filesi, C., Vari, R., Scazzocchio, B. and Masella, R., 2010. Bioavailability of the polyphenols: status and controversies. International Journal of Molecular Sciences 11: 1321-1342. https://doi.org/10.3390/ijms11041321
Dobranowski, P.A. and Stintzi, A., 2021. Resistant starch, microbiome, and precision modulation. Gut Microbes 13: 1926842. https://doi.org/10.1080/19490976.2021.1926842
Duar, R.M., Ang, P.T., Hoffman, M., Wehling, R., Hutkins, R. and Schlegel, V., 2015. Processing effects on four prebiotic carbohydrates supplemented in an extruded cereal and a low pH drink. Cogent Food and Agriculture 1: 1013782. https://doi.org/10.1080/23311932.2015.1013782
Falony, G., Lazidou, K., Verschaeren, A., Weckx, S., Maes, D. and De Vuyst, L., 2009. In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Applied and Environmental Microbiology 75: 454-461. https://doi.org/10.1128/aem.01488-08
Franco, R.Z., Fallaize, R., Hwang, F. and Lovegrove, J.A., 2019. Strategies for online personalised nutrition advice employed in the development of the eNutri web app. Proceedings of the Nutrition Society 78: 407-417. https://doi.org/10.1017/s0029665118002707
François, I.E.J.A., Lescroart, O., Veraverbeke, W.S., Windey, K., Verbeke, K. and Broekaert, W.F., 2014. Tolerance and the effect of high doses of wheat bran extract, containing arabinoxylan-oligosaccharides, and oligofructose on faecal output: a double-blind, randomised, placebo-controlled, cross-over trial. Journal of Nutritional Science 3: e49. https://doi.org/10.1017/jns.2014.52
Franks, A.H., Harmsen, H.J.M., Raangs, G.C., Jansen, G.J., Schut, F. and Welling, G.W., 1998. Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology 64: 3336-3345.
Gibson, G.R., Beatty, E.R., Wang, X. and Cummings, J.H., 1995. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108: 975-982. https://doi.org/10.1016/0016-5085(95)90192-2
Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K. and Reid, G., 2017. Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology 14: 491-502. https://doi.org/10.1038/nrgastro.2017.75
Gibson, G.R. and Roberfroid, M.B., 1995. Dietary modulation of the human colonic microbiota – introducing the concept of prebiotics. Journal of Nutrition 125: 1401-1412. https://doi.org/10.1093/jn/125.6.1401
Glibowski, P. and Wasko, A., 2008. Effect of thermochemical treatment on the structure of inulin and its gelling properties. International Journal of Food Science and Technology 43: 2075-2082. https://doi.org/10.1111/j.1365-2621.2008.01825.x
Gomez, B., Gullon, B., Yanez, R., Schols, H. and Alonso, J.L., 2016. Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: a comparative evaluation. Journal of Functional Foods 20: 108-121. https://doi.org/10.1016/j.jff.2015.10.029
Gressier, M. and Frost, G., 2022. Minor changes in fibre intake in the UK population between 2008/2009 and 2016/2017. European Journal of Clinical Nutrition 76: 322-327. https://doi.org/10.1038/s41430-021-00933-2
Grider, J.R. and Piland, B.E., 2007. The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF. American Journal of Physiology – Gastrointestinal and Liver Physiology 292: 429-437. https://doi.org/10.1152/ajpgi.00376.2006
Grimaldi, R., Cela, D., Swann, J.R., Vulevic, J., Gibson, G.R., Tzortzis, G. and Costabile, A., 2017. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children. FEMS Microbiology Ecology 93: fiw233. https://doi.org/10.1093/femsec/fiw233
Harris, P.A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N. and Conde, J.G., 2009. Research electronic data capture (REDCap)-a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics 42: 377-381. https://doi.org/10.1016/j.jbi.2008.08.010
Healey, G., Murphy, R., Butts, C., Brough, L., Whelan, K. and Coad, J., 2018. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study. British Journal of Nutrition 119: 176-189. https://doi.org/10.1017/s0007114517003440
Isakov, V., Pilipenko, V., Shakhovskaya, A. and Tutelyan, V., 2013. Efficacy of inulin enriched yogurt on bowel habits in patients with irritable bowel syndrome with constipation: a pilot study. Faseb Journal 27 Suppl. 1: lb426.
Jackson, P.P.J., Wijeyesekera, A. and Rastall, R.A., 2023. Inulin-type fructans and short-chain fructooligosaccharides-their role within the food industry as fat and sugar replacers and texture modifiers-what needs to be considered! Food Science and Nutrition 11: 17-38. https://doi.org/10.1002/fsn3.3040
Jackson, P.P.J., Wijeyesekera, A., Theis, S., Van Harsselaar, J. and Rastall, R.A., 2022. Food for thought! Inulin-type fructans: does the food matrix matter? Journal of Functional Foods 90: 104987. https://doi.org/10.1016/j.jff.2022.104987
Karimi, R., Azizi, M.H., Ghasemlou, M. and Vaziri, M., 2015. Application of inulin in cheese as prebiotic, fat replacer and texturizer: a review. Carbohydrate Polymers 119: 85-100. https://doi.org/10.1016/j.carbpol.2014.11.029
Kemperman, R.A., Gross, G., Mondot, S., Possemiers, S., Marzorati, M., Van de Wiele, T., Dore, J. and Vaughan, E.E., 2013. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Research International 53: 659-669. https://doi.org/10.1016/j.foodres.2013.01.034
Kim, H., Jeong, Y., Kang, S.N., You, H.J. and Ji, G.E., 2020. Co-culture with Bifidobacterium catenulatum improves the growth, gut colonization, and butyrate production of Faecalibacterium prausnitzii: in vitro and in vivo studies. Microorganisms 8: 788. https://doi.org/10.3390/microorganisms8050788
Kleessen, B., Schwarz, S., Boehm, A., Fuhrmann, H., Richter, A., Henle, T. and Krueger, M., 2007. Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. British Journal of Nutrition 98: 540-549. https://doi.org/10.1017/s0007114507730751
Klewicki, R., 2007. The stability of gal-polyols and oligosaccharides during pasteurization at a low pH. Lwt-Food Science and Technology 40: 1259-1265. https://doi.org/10.1016/j.lwt.2006.08.008
Kruse, H.P., Kleessen, B. and Blaut, M., 1999. Effects of inulin on faecal bifidobacteria in human subjects. British Journal of Nutrition 82: 375-382. https://doi.org/10.1017/s0007114599001622
Langendijk, P.S., Schut, F., Jansen, G.J., Raangs, G.C., Kamphuis, G.R., Wilkinson, M.H.F. and Welling, G.W., 1995. Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Applied and Environmental Microbiology 61: 3069-3075. https://doi.org/10.1128/aem.61.8.3069-3075.1995
Lewis, S.J. and Heaton, K.W., 1997. Stool form scale as a useful guide to intestinal transit time. Scandinavian Journal of Gastroenterology 32: 920-924. https://doi.org/10.3109/00365529709011203
Leylabadlo, H.E., Ghotaslou, R., Feizabadi, M.M., Farajnia, S., Moaddab, S.Y., Ganbarov, K., Khodadadi, E., Tanomand, A., Sheykhsaran, E., Yousefi, B. and Kafil, H.S., 2020. The critical role of Faecalibacterium prausnitzii in human health: an overview. Microbial Pathogenesis 149: 104344. https://doi.org/10.1016/j.micpath.2020.104344
Maki, K.C., Gibson, G.R., Dickmann, R.S., Kendall, C.W.C., Chen, C.Y.O., Costabile, A., Comelli, E.M., McKay, D.L., Almeida, N.G., Jenkins, D., Zello, G.A. and Blumberg, J.B., 2012. Digestive and physiologic effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition 28: 1115-1121. https://doi.org/10.1016/j.nut.2012.02.010
Manz, W., Amann, R., Ludwig, W., Vancanneyt, M. and Schleifer, K.H., 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology 142: 1097-1106. https://doi.org/10.1099/13500872-142-5-1097
Marteau, P., Jacobs, H., Cazaubiel, M., Signoret, C., Prevel, J.M. and Housez, B., 2011. Effects of chicory inulin in constipated elderly people: a double-blind controlled trial. International Journal of Food Sciences and Nutrition 62: 164-170. https://doi.org/10.3109/09637486.2010.527323
Mensink, M.A., Frijlink, H.W., Maarschalk, K.V. and Hinrichs, W.L.J., 2015. Inulin, a flexible oligosaccharide I: review of its physicochemical characteristics. Carbohydrate Polymers 130: 405-419. https://doi.org/10.1016/j.carbpol.2015.05.026
Micka, A., Siepelmeyer, A., Holz, A., Theis, S. and Schon, C., 2017. Effect of consumption of chicory inulin on bowel function in healthy subjects with constipation: a randomized, double-blind, placebo-controlled trial. International Journal of Food Sciences and Nutrition 68: 82-89. https://doi.org/10.1080/09637486.2016.1212819
Murakami, K. and Livingstone, M.B.E., 2016. Energy density of meals and snacks in the British diet in relation to overall diet quality, BMI and waist circumference: findings from the National Diet and Nutrition Survey. British Journal of Nutrition 116: 1479-1489. https://doi.org/10.1017/s0007114516003573
Nagy, D.U., Sandor-Bajusz, K.A., Body, B., Decsi, T., Van Harsselaar, J., Theis, S. and Lohner, S., in press. Effect of chicory-derived inulin-type fructans on abundance of Bifidobacterium and on bowel function: a systematic review with meta-analyses. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2022.2098246
Palafox-Carlos, H., Ayala-Zavala, J.F. and Gonzalez-Aguilar, G.A., 2011. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science 76: R6-R15. https://doi.org/10.1111/j.1750-3841.2010.01957.x
Pereira, G.V., Abdel-Hamid, A.M., Dutta, S., D’Alessandro-Gabazza, C.N., Wefers, D., Farris, J.A., Bajaj, S., Wawrzak, Z., Atomi, H., Mackie, R.I., Gabazza, E.C., Shukla, D., Koropatkin, N.M. and Cann, I., 2021. Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nature Communications 12: 459. https://doi.org/10.1038/s41467-020-20737-5
Poinot, P., Arvisenet, G., Grua-Priol, J., Fillonneau, C., Le-Bail, A. and Prost, C., 2010. Influence of inulin on bread: kinetics and physico-chemical indicators of the formation of volatile compounds during baking. Food Chemistry 119: 1474-1484. https://doi.org/10.1016/j.foodchem.2009.09.029
Ramnani, P., Gaudier, E., Bingham, M., van Bruggen, P., Tuohy, K.M. and Gibson, G.R., 2010. Prebiotic effect of fruit and vegetable shots containing Jerusalem artichoke inulin: a human intervention study. British Journal of Nutrition 104: 233-240. https://doi.org/10.1017/s000711451000036x
Rao, V.A., 2001. The prebiotic properties of oligofructose at low intake levels. Nutrition Research 21: 843-848. https://doi.org/10.1016/s0271-5317(01)00284-6
Reimer, R.A., Soto-Vaca, A., Nicolucci, A.C., Mayengbam, S., Park, H., Madsen, K.L., Menon, R. and Vaughan, E.E., 2020. Effect of chicory inulin-type fructan-containing snack bars on the human gut microbiota in low dietary fiber consumers in a randomized crossover trial. American Journal of Clinical Nutrition 111: 1286-1296. https://doi.org/10.1093/ajcn/nqaa074
Ribas-Agusti, A., Martin-Belloso, O., Soliva-Fortuny, R. and Elez-Martinez, P., 2018. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition 58: 2531-2548. https://doi.org/10.1080/10408398.2017.1331200
Riviere, A., Selak, M., Geirnaert, A., Van den Abbeele, P. and De Vuyst, L., 2018. Complementary mechanisms for degradation of inulin-type fructans and arabinoxylan oligosaccharides among bifidobacterial strains suggest bacterial cooperation. Applied and Environmental Microbiology 84. https://doi.org/10.1128/aem.02893-17
Riviere, A., Selak, M., Lantin, D., Leroy, F. and De Vuyst, L., 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Frontiers in Microbiology 7: 979. https://doi.org/10.3389/fmicb.2016.00979
Roberfroid, M.B., 2007. Inulin-type fructans: functional food ingredients. Journal of Nutrition 137: 2493S-2502S.
Rodriguez-Garcia, J., Puig, A., Salvador, A. and Hernando, I., 2012. Optimization of a sponge cake formulation with inulin as fat replacer: structure, physicochemical, and sensory properties. Journal of Food Science 77: C189-C197. https://doi.org/10.1111/j.1750-3841.2011.02546.x
Rolim, P.M., 2015. Development of prebiotic food products and health benefits. Food Science and Technology 35: 3-10. https://doi.org/10.1590/1678-457x.6546
Sanders, M.E., Merenstein, D.J., Reid, G., Gibson, G.R. and Rastall, R.A., 2019. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nature Reviews Gastroenterology and Hepatology 16: 605-616. https://doi.org/10.1038/s41575-019-0173-3
Scientific Advisory Committee on Nutrition (SACN), 2015. Carbohydrates and health. TSO, London, UK.
Scott, K.P., Grimaldi, R., Cunningham, M., Sarbini, S.R., Wijeyesekera, A., Tang, M.L.K., Lee, J.C.Y., Yau, Y.F., Ansell, J., Theis, S., Yang, K., Menon, R., Arfsten, J., Manurung, S., Gourineni, V. and Gibson, G.R., 2019. Developments in understanding and applying prebiotics in research and practice-an ISAPP conference paper. Journal of Applied Microbiology 128: 934-949. https://doi.org/10.1111/jam.14424
Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H.R., Shakeel, A., Ansari, A. and Niazi, S., 2016. Inulin: properties, health benefits and food applications. Carbohydrate Polymers 147: 444-454. https://doi.org/10.1016/j.carbpol.2016.04.020
Slavin, J. and Feirtag, J., 2011. Chicory inulin does not increase stool weight or speed up intestinal transit time in healthy male subjects. Food and Function 2: 72-77. https://doi.org/10.1039/c0fo00101e
So, D., Whelan, K., Rossi, M., Morrison, M., Holtmann, G., Kelly, J.T., Shanahan, E.R., Staudacher, H.M. and Campbell, K.L., 2018. Dietary fiber intervention on gut microbiota composition in healthy adults: a systematic review and meta-analysis. American Journal of Clinical Nutrition 107: 965-983. https://doi.org/10.1093/ajcn/nqy041
Struyf, N., Van der Maelen, E., Hemdane, S., Verspreet, J., Verstrepen, K.J. and Courtin, C.M., 2017. Bread dough and baker’s yeast: an uplifting synergy. Comprehensive Reviews in Food Science and Food Safety 16: 850-867. https://doi.org/10.1111/1541-4337.12282
Suau, A., Rochet, V., Sghir, A., Gramet, G., Brewaeys, S., Sutren, M., Rigottier-Gois, L. and Dore, J., 2001. Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Systematic and Applied Microbiology 24: 139-145. https://doi.org/10.1078/0723-2020-00015
Thorning, T.K., Bertram, H.C., Bonjour, J.P., de Groot, L., Dupont, D., Feeney, E., Ipsen, R., Lecerf, J.M., Mackie, A., McKinley, M.C., Michalski, M.C., Remond, D., Riserus, U., Soedamah-Muthu, S.S., Tholstrup, T., Weaver, C., Astrup, A. and Givens, I., 2017. Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. American Journal of Clinical Nutrition 105: 1033-1045. https://doi.org/10.3945/ajcn.116.151548
Tuohy, K.M., Kolida, S., Lustenberger, A.M. and Gibson, G.R., 2001. The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides – a human volunteer study. British Journal of Nutrition 86: 341-348. https://doi.org/10.1079/bjn2001394
Valeur, J., Puaschitz, N.G., Midtvedt, T. and Berstad, A., 2016. Oatmeal porridge: impact on microflora-associated characteristics in healthy subjects. British Journal of Nutrition 115: 62-67. https://doi.org/10.1017/s0007114515004213
Van Loo, J., 2006. Inulin-type fructans as prebiotics. In: Gibson, G.R. and Rastall, R.A. (eds.) Prebiotics: development and application. John Wiley & Son, Chichester, UK, pp. 57-99.
Vandeputte, D., Kathagen, G., D’Hoe, K., Vieira-Silva, S., Valles-Colomer, M., Sabino, J., Wang, J., Tito, R.Y., De Commer, L., Darzi, Y., Ermeire, S.V., Falony, G. and Raes, J., 2017. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551: 507. https://doi.org/10.1038/nature24460
Walker, A.W., Duncan, S.H., Leitch, E.C.M., Child, M.W. and Flint, H.J., 2005. PH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Applied and Environmental Microbiology 71: 3692-3700. https://doi.org/10.1128/aem.71.7.3692-3700.2005
Wallner, G., Amann, R. and Beisker, W., 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136-143. https://doi.org/10.1002/cyto.990140205
Walton, G.E., Lu, C.Y., Trogh, I., Arnaut, F. and Gibson, G.R., 2012. A randomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutrition Journal 11: 36. https://doi.org/10.1186/1475-2891-11-36
Wilson, B. and Whelan, K., 2017. Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology 32: 64-68. https://doi.org/10.1111/jgh.13700
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 2399 | 949 | 77 |
Full Text Views | 40 | 20 | 3 |
PDF Views & Downloads | 66 | 37 | 6 |
Recently there is much debate in the scientific community over the impact of the food matrix on prebiotic efficacy of inulin-type fructans. Previous studies suggest that prebiotic selectivity of inulin-type fructans towards bifidobacteria is unaffected by the food matrix. Due to differences in study design, definitive conclusions cannot be drawn from these findings with any degree of certainty. In this randomised trial, we aimed to determine the effects that different food matrices had on the prebiotic efficacy of inulin-type fructans following a standardised 10-day, 4-arm, parallel, randomised protocol with inulin either in pure form or incorporated into shortbread biscuits, milk chocolate or a rice drink. Similar increases in Bifidobacterium counts were documented across all four interventions using both fluorescence in situ hybridisation (pure inulin: +0.63; shortbread: +0.59; milk chocolate: +0.65 and rice drink: +0.71 (log10 cells/g wet faeces) and 16S rRNA sequencing quantitative microbiome profiling data (pure inulin: +1.21 × 109; shortbread: +1.47 × 109; milk chocolate: +8.59 × 108 and rice drink: +1.04 × 109 (cells/g wet faeces) (all
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 2399 | 949 | 77 |
Full Text Views | 40 | 20 | 3 |
PDF Views & Downloads | 66 | 37 | 6 |