Genetics, lifestyle, and dietary habits contribute to metabolic syndrome, but also an altered gut microbiota has been identified. Based on this knowledge it is suggested that host bacterial composition tends to change in response to dietary factors and weight loss. The aim of this study was to identify bacteria affecting host metabolism in obesity during weight loss and to correlate them with changes of the body composition obtained from bioelectrical impedance analysis (BIA). We recruited obese individuals receiving a dietary intervention according DACH (German, Austrian, and Swiss Society of Nutrition) reference values and guidelines for ‘prevention and therapy of obesity’ of DAG e.V., DDG, DGE e.V., and DGEM e.V. over three months. Faecal microbiota and BIA measurements were conducted at three time points, before, during, and after the intervention. Gut microbiota was analysed on the basis of 16S rDNA with quantitative real time PCR. Additionally, a food frequency questionnaire with questions to nutritional behaviour, lifestyle, and physical activity was administered before intervention. After weight reduction, obese individuals showed a significant increase of total bacterial abundance. The ratio of Firmicutes/Bacteroidetes significantly decreased during intervention. Lactobacilli significantly increased between the first and the second time point. These differences also correlated with differences in weight percentage. During the intervention period Clostridium cluster IV increased significantly between the second and the third time point. In contrast Clostridium cluster XIVa showed a decreased abundance. The dominant butyrate producer, Faecalibacterium prausnitzii, significantly increased as did the abundance of the butyryl-CoA: acetate CoA-transferase gene. Archaea and Akkermansia were significantly more prevalent after weight reduction. Our results show a clear difference in the gut bacterial composition before and after dietary intervention with a rapid change in gut microbial composition after a few weeks, but also indicate that a major shift requires long term dietary treatment.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Armougom, F., Henry, M., Vialettes, B., Raccah, D. and Raoult, D., 2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PloS One 4: e7125.
'Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients ' () 4 PloS One : e7125.
Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., Fernandes, G.R., Tap, J., Bruls, T., Batto, J.M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H.B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E.G., Wang, J., Guarner, F., Pedersen, O., De Vos, W.M., Brunak, S., Dore, J., Antolin, M., Artiguenave, F., Blottiere, H.M., Almeida, M., Brechot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Foerstner, K.U., Friss, C., Van de Guchte, M., Guedon, E., Haimet, F., Huber, W., Van Hylckama-Vlieg, J., Jamet, A., Juste, C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E., Merieux, A., Melo Minardi, R., M’Rini, C., Muller, J., Oozeer, R., Parkhill, J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A., Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller, G., Weissenbach, J., Ehrlich, S.D. and Bork, P., 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180.
'Enterotypes of the human gut microbiome ' () 473 Nature : 174 -180.
Berg, R.D., 1996. The indigenous gastrointestinal microflora. Trends in Microbiology 4: 430-435.
'The indigenous gastrointestinal microflora ' () 4 Trends in Microbiology : 430 -435.
Bervoets, L., Van Hoorenbeek, K., Kortleven, I., Van Noten, C., Hens, N., Vael, C., Goossens, H., Desager, K. and Vankerckhoven, V., 2013. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathogens 5: 10.
'Differences in gut microbiota composition between obese and lean children: a cross-sectional study ' () 5 Gut Pathogens : 10.
Boden, G. and Shulman, G.I., 2002. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. European Journal of Clinical Investigation 32 Suppl. 3: 14-23.
'Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction ' () 32 European Journal of Clinical Investigation : 14 -23.
Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M., Chabo, C., Waget, A., Delmee, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrieres, J., Tanti, J.F., Gibson, G.R., Casteilla, L., Delzenne, N.M., Alessi, M.C. and Burcelin, R., 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761-1772.
'Metabolic endotoxemia initiates obesity and insulin resistance ' () 56 Diabetes : 1761 -1772.
Clemente, J.C., Ursell, L.K., Parfrey, L.W. and Knight, R., 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258-1270.
'The impact of the gut microbiota on human health: an integrative view ' () 148 Cell : 1258 -1270.
Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R. and Tiedje, J.M., 2014. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Research 42: D633-642.
'Ribosomal database project: data and tools for high throughput rRNA analysis ' () 42 Nucleic Acids Research : D633 -642.
Collado, M.C., Derrien, M., Isolauri, E., De Vos, W.M. and Salminen, S., 2007. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults and the elderly. Applied and Environmental Microbiology 73: 7767-7770.
'Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults and the elderly ' () 73 Applied and Environmental Microbiology : 7767 -7770.
De Ferranti, S. and Mozaffarian, D., 2008. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clinical Chemistry 54: 945-955.
'The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences ' () 54 Clinical Chemistry : 945 -955.
Delzenne, N.M. and Cani, P.D., 2011. Interaction between obesity and the gut microbiota: relevance in nutrition. Annual Review of Nutrition 31: 15-31.
'Interaction between obesity and the gut microbiota: relevance in nutrition ' () 31 Annual Review of Nutrition : 15 -31.
Deutsche Adipositas Gesellschaft (DAG), 2014. Interdisziplinäre Leitlinie der Qualität S3 zur ‘Prävention und Therapie der Adipositas’. Available at: http://tinyurl.com/kd62a5e.
'Interdisziplinäre Leitlinie der Qualität S3 zur ‘Prävention und Therapie der Adipositas’ ', ().
DiBaise, J.K., Frank, D.N. and R. Mathur, 2012. Impact of the gut microbiota on the development of obesity: current concepts. American Journal of Gastroenterology 2012 Suppl. 1: 22-27.
'Impact of the gut microbiota on the development of obesity: current concepts ' () 2012 American Journal of Gastroenterology : 22 -27.
DiBaise, J.K., Zhang, H., Crowell, M.D., Krajmalnik-Brown, R., Decker, G.A. and Rittmann, B.E., 2008. Gut microbiota and its possible relationship with obesity. Mayo Clinic Proceedings 83: 460-469.
'Gut microbiota and its possible relationship with obesity ' () 83 Mayo Clinic Proceedings : 460 -469.
Everard, A. and Cani, P.D., 2013. Diabetes, obesity and gut microbiota. Best Practice and Research: Clinical Gastroenterology 27: 73-83.
'Diabetes, obesity and gut microbiota ' () 27 Best Practice and Research: Clinical Gastroenterology : 73 -83.
Foster, K.R. and Lukaski, H.C., 1996. Whole-body impedance--what does it measure? American Journal of Clinical Nutrition 64: 388S-396S.
'Whole-body impedance--what does it measure? ' () 64 American Journal of Clinical Nutrition : 388S -396S.
Frohnert, B.I., Jacobs, D.R., Jr., Steinberger, J., Moran, A., Steffen, L.M. and Sinaiko, A.R., 2013 Relation between serum free fatty acids and adiposity, insulin resistance, and cardiovascular risk factors from adolescence to adulthood. Diabetes 62: 3163-3169.
'Relation between serum free fatty acids and adiposity, insulin resistance, and cardiovascular risk factors from adolescence to adulthood ' () 62 Diabetes : 3163 -3169.
Furet, J.P., Kong, L.C., Tap, J., Poitou, C., Basdevant, A., Bouillot, J.L., Mariat, D., Corthier, G., Dore, J., Henegar, C., Rizkalla, S. and Clement, K., 2010. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59: 3049-3057.
'Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers ' () 59 Diabetes : 3049 -3057.
Gill, S.R., Pop, M., Deboy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M. and Nelson, K.E., 2006. Metagenomic analysis of the human distal gut microbiome. Science 312: 1355-1359.
'Metagenomic analysis of the human distal gut microbiome ' () 312 Science : 1355 -1359.
Graessler, J., Qin, Y., Zhong, H., Zhang, J., Licinio, J., Wong, M., Xu, A., Chavakis, T., Bornstein, A., Ehrhart-Bornstein, M., Lamounier-Zepter, V., Lohmann, T., Wolf, T. and Bornstein, S., 2012. Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters. Pharmacogenomics Journal 13: 514-522.
'Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters ' () 13 Pharmacogenomics Journal : 514 -522.
Hamer, H.M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F.J. and Brummer, R.J., 2008. Review article: the role of butyrate on colonic function. Alimentary Pharmacology and Therapeutics 27: 104-119.
'Review article: the role of butyrate on colonic function ' () 27 Alimentary Pharmacology and Therapeutics : 104 -119.
Ivanov, II and Honda, K., 2012. Intestinal commensal microbes as immune modulators. Cell Host Microbe 12: 496-508.
'Intestinal commensal microbes as immune modulators ' () 12 Cell Host Microbe : 496 -508.
Karlsson, C., Molin, G., Falk, F., Johansson Hagslätt, M., Jakesevic, M., Hakansson, A., Jeppsson, B., Weström, B. and Ahrné, S., 2011. Effect on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dense diet from fetal life through to 6 months of age. British Journal of Nutrition 106: 887-895.
'Effect on weight gain and gut microbiota in rats given bacterial supplements and a high-energy-dense diet from fetal life through to 6 months of age ' () 106 British Journal of Nutrition : 887 -895.
Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergstrom, G., Behre, C.J., Fagerberg, B., Nielsen, J. and Backhed, F., 2013. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498: 99-103.
'Gut metagenome in European women with normal, impaired and diabetic glucose control ' () 498 Nature : 99 -103.
Khan, M., Raoult, D., Richet, H., Lepidi, H. and La Scola, B., 2007. Growth-promoting effects of single-dose intragastrically administered probiotics in chicken. British Poultry Science 48: 732-735.
'Growth-promoting effects of single-dose intragastrically administered probiotics in chicken ' () 48 British Poultry Science : 732 -735.
Larsen, E.C., Kondo, Y., Fahrenholtz, C.D. and Duncan, I.D., 2008. Generation of cultured oligodendrocyte progenitor cells from rat neonatal brains. Current Protocols in Stem Cell Biology Chapter 2: Unit 2D.
'Generation of cultured oligodendrocyte progenitor cells from rat neonatal brains ', in Current Protocols in Stem Cell Biology Chapter 2: Unit 2D , ().
Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R. and Sayler, G., 2006. Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Applied and Environmental Microbiology 72: 4214-4224.
'Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water ' () 72 Applied and Environmental Microbiology : 4214 -4224.
Le Chatelier, E., Nielsen, T., Qin, J., Prifti, E., Hildebrand, F., Falony, G., Almeida, M., Arumugam, M., Batto, J.M., Kennedy, S., Leonard, P., Li, J., Burgdorf, K., Grarup, N., Jorgensen, T., Brandslund, I., Nielsen, H.B., Juncker, A.S., Bertalan, M., Levenez, F., Pons, N., Rasmussen, S., Sunagawa, S., Tap, J., Tims, S., Zoetendal, E.G., Brunak, S., Clement, K., Dore, J., Kleerebezem, M., Kristiansen, K., Renault, P., Sicheritz-Ponten, T., De Vos, W.M., Zucker, J.D., Raes, J., Hansen, T., Bork, P., Wang, J., Ehrlich, S.D. and Pedersen, O., 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500: 541-546.
'Richness of human gut microbiome correlates with metabolic markers ' () 500 Nature : 541 -546.
Ley, R.E., Turnbaugh, P.J., Klein, S. and Gordon, J.I., 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444: 1022-1023.
'Microbial ecology: human gut microbes associated with obesity ' () 444 Nature : 1022 -1023.
Lin, H.V., Frassetto, A., Kowalik, E.J., Jr., Nawrocki, A.R., Lu, M.M., Kosinski, J.R., Hubert, J.A., Szeto, D., Yao, X., Forrest, G. and Marsh, D.J., 2012. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PloS One 7: e35240.
'Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms ' () 7 PloS One : e35240.
Louis, P. and Flint, H.J., 2007. Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples. Applied and Environmental Microbiology 73: 2009-2012.
'Development of a semiquantitative degenerate real-time pcr-based assay for estimation of numbers of butyryl-coenzyme A (CoA) CoA transferase genes in complex bacterial samples ' () 73 Applied and Environmental Microbiology : 2009 -2012.
Louis, P. and Flint, H.J., 2009. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiology Letters 294: 1-8.
'Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine ' () 294 FEMS Microbiology Letters : 1 -8.
Louis, P., Scott, K.P., Duncan, S.H. and Flint, H.J., 2007. Understanding the effects of diet on bacterial metabolism in the large intestine. Journal of Applied Microbiology 102: 1197-1208.
'Understanding the effects of diet on bacterial metabolism in the large intestine ' () 102 Journal of Applied Microbiology : 1197 -1208.
Mariat, D., Firmesse, O., Levenez, F., Guimaraes, V., Sokol, H., Dore, J., Corthier, G. and Furet, J.P., 2009. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology 9: 123.
'The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age ' () 9 BMC Microbiology : 123.
Matsuki, T., Watanabe, K., Fujimoto, J., Kado, Y., Takada, T., Matsumoto, K. and Tanaka, R., 2004a. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Applied and Environmental Microbiology 70: 167-173.
'Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria ' () 70 Applied and Environmental Microbiology : 167 -173.
Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T. and Tanaka, R., 2004b. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Applied and Environmental Microbiology 70: 7220-7228.
'Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces ' () 70 Applied and Environmental Microbiology : 7220 -7228.
Mazmanian, S.K., Round, J.L. and Kasper, D.L., 2008. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453: 620-625.
'A microbial symbiosis factor prevents intestinal inflammatory disease ' () 453 Nature : 620 -625.
Million, M., Angelakis, E., Paul, M., Armougom, F., Leibovici, L. and Raoult, D., 2012. Comperative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals., Microbial Pathogenesis, pp. 100-108.
'Comperative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals ', in Microbial Pathogenesis , () 100 -108.
Murai, M., Turovskaya, O., Kim, G., Madan, R., Karp, C., Cheroutre, H. and Kronenberg, M., 2009. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nature Immunology 10: 1178-1184.
'Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis ' () 10 Nature Immunology : 1178 -1184.
Ootsubo, M., Shimizu, T., Tanaka, R., Sawabe, T., Tajima, K., Yoshimizu, M., Ezura, Y., Ezaki, T. and Oyaizu, H., 2002. Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization. Journal of Applied Microbiology 93: 60-68.
'Oligonucleotide probe for detecting Enterobacteriaceae by in situ hybridization ' () 93 Journal of Applied Microbiology : 60 -68.
Pajak, B., Orzechowski, A. and Gajkowska, B., 2007. Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells. Advances in Medical Sciences 52: 83-88.
'Molecular basis of sodium butyrate-dependent proapoptotic activity in cancer cells ' () 52 Advances in Medical Sciences : 83 -88.
Penders, J., Vink, C., Driessen, C., London, N., Thijs, C. and Stobberingh, E.E., 2005. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiology Letters 243: 141-147.
'Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR ' () 243 FEMS Microbiology Letters : 141 -147.
Raijilic-Stojanovic, M., Biagi, E., Heilig, H., Kajander, K., Kekkonen, R., Tims, S. and De Vos, W., 2011. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141: 1792-1801.
'Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome ' () 141 Gastroenterology : 1792 -1801.
Raskin, L., Stromley, J.M., Rittmann, B.E. and Stahl, D.A., 1994. Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens. Applied and Environmental Microbiology 60: 1232-1240.
'Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens ' () 60 Applied and Environmental Microbiology : 1232 -1240.
Remely, M., Dworzak, S., Hippe, B., Zwielehner, J., Aumüller, E., Brath, H. and Haslberger, A.G., 2013. Abundance and diversity of microbiota in type 2 diabetes and obesity. Diabetes/Metabolism Research and Reviews 4: 1-8.
'Abundance and diversity of microbiota in type 2 diabetes and obesity ' () 4 Diabetes/Metabolism Research and Reviews : 1 -8.
Robinson, E. and Thompson, W., 1952. Effect on weight gain of the addition of Lactobacillus acidophilus to the formula of newborn infants. Journal of Pediatrics 41: 395-398.
'Effect on weight gain of the addition of Lactobacillus acidophilus to the formula of newborn infants ' () 41 Journal of Pediatrics : 395 -398.
Samuel, B.S. and Gordon, J.I., 2006. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proceedings National Academy of Science of the USA 103: 10011-10016.
'A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism ' () 103 Proceedings National Academy of Science of the USA : 10011 -10016.
Scott, K.P., Gratz, S.W., Sheridan, P.O., Flint, H.J. and Duncan, S.H., 2013. The influence of diet on the gut microbiota. Pharmacological Research 69: 52-60.
'The influence of diet on the gut microbiota ' () 69 Pharmacological Research : 52 -60.
Seksik, P., Sokol, H., Lepage, P., Vasquez, N., Manichanh, C., Mangin, I., Pochart, P., Doré, J. and Marteau, P., 2006. Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease. Alimentary Pharmacology and Therapeutics 24 Suppl. 3: 11-18.
'Review article: the role of bacteria in onset and perpetuation of inflammatory bowel disease ' () 3 Alimentary Pharmacology and Therapeutics 24 Suppl. : 11 -18.
Shi, H., Kokoeva, M.V., Inouye, K., Tzameli, I., Yin, H. and Flier, J.S., 2006. TLR4 links innate immunity and fatty acid-induced insulin resistance. Journal of Clinical Investigation 116: 3015-3025.
'TLR4 links innate immunity and fatty acid-induced insulin resistance ' () 116 Journal of Clinical Investigation : 3015 -3025.
Sobhani, I., Tap, J., Roudot-Thoraval, F., Roperch, J., Letulle, S., Langella, P., Corthier, G., Tran van Nhieu, J. and Furet, J., 2011. Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One: e16393.
'Microbial dysbiosis in colorectal cancer (CRC) patients ', in PLoS One , () e16393.
Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermudez-Humaran, L., Gratadoux, J., Blugeon, S., Bridonneau, C., Furet, J., Corthier, G., Grangette, C., Vasquez, N., Pochart, P., Trugnan, G., Thomas, G., Blottiére, H., Doré, J., Marteau, P., Seksik, P. and Langella, P., 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the USA 16731-16736.
'Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients ' , , .
Sommer, F. and Backhed, F., 2013. The gut microbiota – masters of host development and physiology. Nature Reviews Microbiology 11: 227-238.
'The gut microbiota – masters of host development and physiology ' () 11 Nature Reviews Microbiology : 227 -238.
Tanaka, K. and Ishikawa, H., 2004. Role of intestinal bacterial flora in oral tolerance induction. Histology and Histopathology 19: 907-914.
'Role of intestinal bacterial flora in oral tolerance induction ' () 19 Histology and Histopathology : 907 -914.
Tremaroli, V. and Backhed, F., 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489: 242-249.
'Functional interactions between the gut microbiota and host metabolism ' () 489 Nature : 242 -249.
Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., Egholm, M., Henrissat, B., Heath, A.C., Knight, R. and Gordon, J.I., 2009a. A core gut microbiome in obese and lean twins. Nature 457: 480-484.
'A core gut microbiome in obese and lean twins ' () 457 Nature : 480 -484.
Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R. and Gordon, J.I., 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031.
'An obesity-associated gut microbiome with increased capacity for energy harvest ' () 444 Nature : 1027 -1031.
Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., Rey, F.E., Knight, R. and Gordon, J.I., 2009b. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine 1: 6ra14.
'The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice ' () 1 Science Translational Medicine : 6ra14.
Walker, A.W., Ince, J., Duncan, S.H., Webster, L.M., Holtrop, G., Ze, X., Brown, D., Stares, M.D., Scott, P., Bergerat, A., Louis, P., McIntosh, F., Johnstone, A.M., Lobley, G.E., Parkhill, J. and Flint, H.J., 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME Journal 5: 220-230.
'Dominant and diet-responsive groups of bacteria within the human colonic microbiota ' () 5 ISME Journal : 220 -230.
Walter, J., Hertel, C., Tannock, G.W., Lis, C.M., Munro, K. and Hammes, W.P., 2001. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology 67: 2578-2585.
'Detection of LactobacillusPediococcusLeuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis ' () 67 Applied and Environmental Microbiology : 2578 -2585.
Woo, P.C., Leung, P.K., Leung, K.W. and Yuen, K.Y., 2000. Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient. Molecular Pathology 53: 211-215.
'Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient ' () 53 Molecular Pathology : 211 -215.
Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.Y., Keilbaugh, S.A., Bewtra, M., Knights, D., Walters, W.A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F.D. and Lewis, J.D., 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334: 105-108.
'Linking long-term dietary patterns with gut microbial enterotypes ' () 334 Science : 105 -108.
Wu, H.J. and Wu, E., 2012. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 3: 4-14.
'The role of gut microbiota in immune homeostasis and autoimmunity ' () 3 Gut Microbes : 4 -14.
Yu, Y., Lee, C., Kim, J. and Hwang, S., 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering 89: 670-679.
'Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction ' () 89 Biotechnology and Bioengineering : 670 -679.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 944 | 757 | 57 |
Full Text Views | 93 | 77 | 0 |
PDF Views & Downloads | 40 | 13 | 0 |
Genetics, lifestyle, and dietary habits contribute to metabolic syndrome, but also an altered gut microbiota has been identified. Based on this knowledge it is suggested that host bacterial composition tends to change in response to dietary factors and weight loss. The aim of this study was to identify bacteria affecting host metabolism in obesity during weight loss and to correlate them with changes of the body composition obtained from bioelectrical impedance analysis (BIA). We recruited obese individuals receiving a dietary intervention according DACH (German, Austrian, and Swiss Society of Nutrition) reference values and guidelines for ‘prevention and therapy of obesity’ of DAG e.V., DDG, DGE e.V., and DGEM e.V. over three months. Faecal microbiota and BIA measurements were conducted at three time points, before, during, and after the intervention. Gut microbiota was analysed on the basis of 16S rDNA with quantitative real time PCR. Additionally, a food frequency questionnaire with questions to nutritional behaviour, lifestyle, and physical activity was administered before intervention. After weight reduction, obese individuals showed a significant increase of total bacterial abundance. The ratio of Firmicutes/Bacteroidetes significantly decreased during intervention. Lactobacilli significantly increased between the first and the second time point. These differences also correlated with differences in weight percentage. During the intervention period Clostridium cluster IV increased significantly between the second and the third time point. In contrast Clostridium cluster XIVa showed a decreased abundance. The dominant butyrate producer, Faecalibacterium prausnitzii, significantly increased as did the abundance of the butyryl-CoA: acetate CoA-transferase gene. Archaea and Akkermansia were significantly more prevalent after weight reduction. Our results show a clear difference in the gut bacterial composition before and after dietary intervention with a rapid change in gut microbial composition after a few weeks, but also indicate that a major shift requires long term dietary treatment.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 944 | 757 | 57 |
Full Text Views | 93 | 77 | 0 |
PDF Views & Downloads | 40 | 13 | 0 |