Save

Anti-inflammaging effects of Lactobacillus brevis OW38 in aged mice

In: Beneficial Microbes
Authors:
J.-J. Jeong Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.

Search for other papers by J.-J. Jeong in
Current site
Google Scholar
PubMed
Close
,
K.A. Kim Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.

Search for other papers by K.A. Kim in
Current site
Google Scholar
PubMed
Close
,
Y.-J. Hwang Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.

Search for other papers by Y.-J. Hwang in
Current site
Google Scholar
PubMed
Close
,
M.J. Han Department of Food and Nutrition, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.

Search for other papers by M.J. Han in
Current site
Google Scholar
PubMed
Close
, and
D.-H. Kim Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.

Search for other papers by D.-H. Kim in
Current site
Google Scholar
PubMed
Close
Download Citation Get Permissions

Access options

Get access to the full article by using one of the access options below.

Institutional Login

Log in with Open Athens, Shibboleth, or your institutional credentials

Login via Institution

Purchase

Buy instant access (PDF download and unlimited online access):

$40.00

In the present study, lactic acid bacteria (LAB) strains were collected from kimchi and were screened to isolate strains that inhibit lipopolysaccharide (LPS) production by Escherichia coli and p16 expression and nuclear factor-kappa B (NF-κB) activation in LPS-stimulated macrophages. Oral administration of Lactobacillus brevis OW38 (1×109 cfu/mouse) to aged mice (male, 18 months old) for 8 weeks reduced the LPS level in colon fluid and blood. In addition, OW38 treatment also reduced the ratio of Firmicutes or Proteobacteria to Bacteroidetes, which was significantly higher in aged mice than in young mice. Treatment with OW38 in aged mice inhibited the expression of inflammatory markers, such as myeloperoxidase, tumour necrosis factor (TNF), and interleukin (IL)-1β, and inhibited NF-κB activation. Furthermore, it induced the expression of colonic tight junction proteins zonula occludens-1, occludin, and claudin-1. OW38 treatment also suppressed the expression of senescence markers p16, p53, and SAMHD1 in the colon and the hippocampus of aged mice. In addition, it significantly restored spontaneous alternation as well as the expression of brain-derived neurotrophic factor and doublecortin in aged mice compared to that in young mice (P<0.05). Based on these findings, we conclude that OW38 treatment may ameliorate aging-associated colitis and memory impairment by inhibiting gut microbiota LPS production, NF-κB activation, and p16 expression.

Content Metrics

All Time Past 365 days Past 30 Days
Abstract Views 526 402 33
Full Text Views 35 23 7
PDF Views & Downloads 50 40 7