Save

Closed Newton-Cotes Trigonometrically-Fitted Formulae for Numerical Integration of the Schrödinger Equation

In: Computing Letters
Author:
T.E. Simos Laboratory of Computational Sciences, Department of Computer Science and Technology, Faculty of Sciences and Technology, University of Peloponnese, GR-221 00, Greece

Search for other papers by T.E. Simos in
Current site
Google Scholar
PubMed
Close
Download Citation Get Permissions

Access options

Get access to the full article by using one of the access options below.

Institutional Login

Log in with Open Athens, Shibboleth, or your institutional credentials

Login via Institution

Purchase

Buy instant access (PDF download and unlimited online access):

In this paper we investigate the connection between closed Newton-Cotes formulae, trigonometrically-fitted differential methods, symplectic integrators and efficient solution of the Schr¨odinger equation. Several one step symplectic integrators have been produced based on symplectic geometry, as one can see from the literature. However, the study of multistep symplectic integrators is very poor. Zhu et. al. [1] has studied the symplectic integrators and the well known open Newton-Cotes differential methods and as a result has presented the open Newton-Cotes differential methods as multilayer symplectic integrators. The construction of multistep symplectic integrators based on the open Newton-Cotes integration methods was investigated by Chiou and Wu [2]. In this paper we investigate the closed Newton-Cotes formulae and we write them as symplectic multilayer structures. We also develop trigonometrically-fitted symplectic methods which are based on the closed Newton-Cotes formulae. We apply the symplectic schemes to the well known one-dimensional Schr¨odinger equation in order to investigate the efficiency of the proposed method to these type of problems.

Content Metrics

All Time Past 365 days Past 30 Days
Abstract Views 354 96 24
Full Text Views 7 0 0
PDF Views & Downloads 6 1 0