A singe Slater determinant consisting of restricted and unrestricted, in spins, parts is proposed to construct a reference configuration for singlet excited states having the same symmetry as the ground one. A partially restricted Hartree-Fock approach is developed to derive amended equations determining the spatial molecular orbitals for singlet excited states. They present the natural base to describe the electron correlation in excited states using the wellestablished spin-annihilated perturbation theories. The efficiency of the proposed method is demonstrated by calculations of electronic excitation energies for the Be atom and LiH molecule.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 636 | 508 | 59 |
Full Text Views | 5 | 3 | 2 |
PDF Views & Downloads | 4 | 1 | 0 |
A singe Slater determinant consisting of restricted and unrestricted, in spins, parts is proposed to construct a reference configuration for singlet excited states having the same symmetry as the ground one. A partially restricted Hartree-Fock approach is developed to derive amended equations determining the spatial molecular orbitals for singlet excited states. They present the natural base to describe the electron correlation in excited states using the wellestablished spin-annihilated perturbation theories. The efficiency of the proposed method is demonstrated by calculations of electronic excitation energies for the Be atom and LiH molecule.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 636 | 508 | 59 |
Full Text Views | 5 | 3 | 2 |
PDF Views & Downloads | 4 | 1 | 0 |