A comparison of the labrum-paragnath complex in five species of calanoid copepods

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Although some information is available on how calanoid copepods collect and handle food, there is very little information on the labrum and paragnaths, structures that are the last to receive food before trituration and ingestion. Five species were used to examine the nature of and differences between the labrum-paragnath complex, species with a variety of feeding modes ranging from detritivore to carnivore. The nature of the complex ranged from very simple in Eucalanus bungii bungii Johnson, 1938, to the heavily sclerotized labrum and paragnaths of the carnivore Paraeuchaeta elongata (Esterly, 1913) with its specialized anterior labral lobe. The labrum, which provides a semi-enclosed space for trituration by the mandible gnathobases, is hood shape while the columnar-shaped paragnaths, which hold and help move food towards the mandible gnathobases, contain setule and spicule armature elements. Not only the shape of the complex, but also its orientation are suggested to play roles in dictating dietary choices. The range of structures, from the simple complex of Eucalanus bungii bungii to the beak like complex of Heterorhabdus tanneri (Claus, 1863), along with its claw-like gnathobase armature, provide an indication of the morphological diversity found in the labrum-paragnath complex of calanoid copepods.

A comparison of the labrum-paragnath complex in five species of calanoid copepods

in Crustaceana

Sections

References

AbzhanovA.KaufmanT. C.1999. Homeotic gene and the arthropod head: expression patterns of the labial proboscipedia and deformed genes in crustaceans and insects. Proc. Natl. Acad. Sci. USA96: 10224-10229.

ArnaudJ.BrunetM.MazzaJ.1988. Labral glands in Centropages typicus (Copepoda, Calanoida). I. Sites of synthesis. Journ. Morphol.197: 21-32.

BakkenT.GlasbyC. J.WilsonR. S.2009. A review of paragnath morphology in Nereididae (Polychaeta). Zoosymposia2: 305-316.

BatchelderH. P.1986. Phytoplankton balance in the oceanic subarctic Pacific: grazing impact of Metridia pacifica. Mar. Ecol. Prog. Ser.34: 213-225.

BoxshallG. A.1985. The comparative anatomy of two copepods, a predatory calanoid and a particle-feeding mormonilloid. Phil. Trans. Roy. Soc. Lond. B311: 303-377.

BrousseauD. J.BaglivoJ. A.2005. Laboratory investigations of food selection by the Asian shore crab Hemigrapsus sanguineus: algal versus animal preference. J. Crust. Biol.25: 130-134.

DaggM. J.FrostB. W.NewtonJ.1998. Diel vertical migration and feeding in adult female Calanus pacificus, Metridia lucens and Pseudocalanus newmani during a spring bloom in Dabob Bay, a fjord in Washington USA. Journ. Mar. Systems15: 503-509.

de JongL.MoreauX.BarthélémyR.-M.CasanovaJ.-P.2002. Relevant role of the labrum associated with the mandibles in the Lophogaster typicus digestive function. J. Mar. Biol. Assoc. U.K.82: 219-227.

El-SabaawiR.DowerJ. F.KainzM.MazunderA.2009. Characterizing dietary variability and trophic positions of coastal calanoid copepods: insight from stable isotopes and fatty acids. Mar. Biol.156: 225-237.

FerrariF. D.DahmsH.-U.2007. Post-embryonic development of the Copepoda. Crust. Monogr. 8: vi + 226 pp.

ForteyR. A.ThomasR. H. (eds.) 1998. Arthropod relationships. Syst. Assoc. Spec. Vol. Ser. 55: xii + 383 pp.

FrostB. W.LandryM. R.HassettR. P.1983. Feeding behavior of large calanoid copepods Neocalanus cristatus and N. plumchrus from the subarctic Pacific Ocean. Deep-Sea Res. Part A: Oceanogr. Res.30: 1-13.

GiffordD. J.1993. Protozoa in the diets of Neocalanus spp. in the oceanic subarctic Pacific Ocean. Prog. Oceanogr.32: 223-237.

HegnaT. A.2010. The function of forks: Isotelus-type hypostomes and trilobite feeding. Lethaia43: 411-419.

HołyńskaM.NamV. S.2000. A new Oriental species of Mesocyclops (Copepoda: Cyclopidae). Hydrobiologia429: 197-206.

HuysR.BoxshallG. A.1991. Copepod evolution: 1-468. (Ray SocietyLondon).

ItohK.1970. A consideration on feeding habits of planktonic copepods in relation to the structure of their oral parts. Bull. Plankton Soc. Japan17: 1-10.

JerlingH. L.WooldridgeT. H.1994. Comparative morphology of the feeding appendages of four mesozooplankton species in the Sundays River estuary. S. Afr. J. Zool.29: 252-257.

KimmM. A.PrpicN. M.2006. Formation of the arthropod labrum by fusion of paired and rotated limb-bud-like primordia. Zoomorph.125: 147-155.

KoehlM. A. R.1998. Small-scale hydrodynamics of feeding appendages of marine animals. Oceanography11: 12-14.

KoehlM. A. R.SticklerJ. R.1981. Copepod feeding currents at low Reynolds number. Limnol. Oceanogr.26: 1061-1073.

KoellerP. A.1977. Observations on some bathypelagic copepods living in the British Columbia Mainland Inlets. J. Oceanogr. Soc. Japan33: 219-226.

KonishiK.2007. Morphological notes on the mouthparts of decapod crustacean larvae, with emphasis on palinurid phyllosomas. Bull. Fish. Res. Agen.20: 73-75.

LewisA. G.ChattersL.RaudseppM.1998. Feeding structures and their functions in adult and preadult Tigriopus californicus (Copepoda: Harpacticoida). J. Mar. Biol. Assoc. U.K.78: 451-466.

LiuH.DaggM. J.StromS.2005. Grazing by the calanoid copepod Neocalanus cristatus on the microbial food web in the coastal Gulf of Alaska. J. Plankton Res.27: 647-662.

MaasA.WaloszekD.2005. Phosphatocopina: ostracode-like sister group of Eucrustacea. Hydrobiologia538: 139-152.

MascaroM.SeedR.2001. Choice of prey size and species in Carcinus maenas (L.) feeding on four bivalves of contrasting shell morphology. Hydrobiologia449: 159-170.

MillerC. B.NelsonD. M.WeissC.SoeldnerA. H.1990. Morphogenesis of opal teeth in calanoid copepods. Mar. Biol.106: 91-101.

NishidaS.OhtsukaS.1996. Specialized feeding mechanism in the pelagic copepod genus Heterorhabdus (Calanoida: Heterorhabdidae), with special reference to the mandibular tooth and labral glands. Mar. Biol.126: 619-632.

OhtsukaS.OhayeS.TanimuraA.FukuchiM.HattoriH.SasakiH.MatsumaO.1993. Feeding ecology of copepodid stages of Eucalanus bungii in the Chukchi and northern Bering seas in October 1988. Proc. NIPR Symp. Polar Biol.6: 27-37.

PaffenhöferG.-A.LewisK. D.1990. Perceptive performance and feeding behavior of calanoid copepods. Journ. Plankton Res.12: 933-946.

ParkT.1966. The biology of a calanoid copepod, Epilabidocera amphitrites McMurrich. La Cellule66: 129-251.

ParkT.1995. Taxonomy and distribution of the marine calanoid copepod family Euchaetidae. Bulletin Scripps Institution of Oceanography University of California San Diego29: 1-204.

PouletS. A.GillC. W.1988. Spectral analyses of movements made by the cephalic appendages of copepods. Mar. Ecol. Prog. Ser.43: 259-267.

RazoulsC.de BovéeF.KouwenbergJ.DesreumauxN.2005-2013. Diversity and geographic distribution of marine planktonic copepods http://copepodes.obs-banyuls.fr/en

RobertsonR. M.LaverackM. S.1979. Function of the labrum in the lobster Homarus gammarus (L.). Proc. Roy. Soc. Lond. B: Biol. Sci.206: 209-233.

ScholtzG.EdgecombeG. D.2006. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev. Genes Evol.216: 395-415.

StricklerJ. R.1982. Calanoid copepods, feeding currents, and the role of gravity. Science218: 158-160.

SullivanB. K.MillerC. B.PetersonW. T.SoeldnerA. H.1975. A scanning electron microscope study of the mandibular morphology of boreal copepods. Mar. Biol.30: 175-182.

WaloszekD.2003. Cambrian Orsten-type preserved arthropods and the phylogeny of crustacea. In: A. Legakis S. Sfenthourakis R. Polymeni & M. Thessalou-Legaki (eds.) The New Panorama of Animal Evolution. Proc. 18th Int. Congr. Zoology: 66-84.

WolffC.ScholtzG.2006. Cell lineage analysis of the mandibular segment of the amphipod Orchestia cavimana reveals that the crustacean paragnaths are sternal outgrowths and not limbs. Frontiers in Zoology3: 3-19.

YamaguchiA.DalpadadoP.IkedaT.2003. Morphological comparison of feeding appendages of Calanus and Neocalanus. Bull. Fish. Sci. Hokkaido Univ.54: 59-65.

YamaguchiA.IkedaT.2000. Vertical distribution, life cycle and body allometry of two oceanic calanoid copepods (Pleuromamma scutullata and Heterorhabdus tanneri) in the Oyashio region, western North Pacific Ocean. J. Plankton Res.22: 29-46.

YenJ.1982. Sources of variability in attack rates of Euchaeta elongata Esterly, a carnivorous marine copepod. J. Exp. Mar. Biol. Ecol.63: 105-117.

YenJ.1987. Predation by a carnivorous marine copepod Euchaeta norwegica Bock, on eggs and larvae of the North Atlantic cod Gadus morhua L. J. Exp. Mar. Biol. Ecol.112: 283-296.

ZeniC.StagniA.2000. Ducts of the labral glands of Leptestheria dahalacensis (Crustacea: Banchiopoda: Spinicaudata). J. Morphol.246: 68-84.

ZhengL.DongX. P.2010. The developmental trend of labrum and median eyes of Orsten-type preserved Phosphatocopina (Crustacea). Sci. China Earth Sci.53: 18-26.

Figures

  • View in gallery

    Eucalanus bungii bungii Johnson, 1938: A, lateral view of anterior body including labium-paragnath complex; B, lateral view of labrum-paragnath complex including mandible base and beginning of digestive tract. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

  • View in gallery

    Eucalanus bungii bungii Johnson, 1938: A, enlarged view of labrum and lip plus paragnaths; B, confocal view of area shown in A. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

  • View in gallery

    Eucalanus bungii bungii Johnson, 1938: A, confocal — ventral view of complex; B, confocal: ventral view with image rotated to view paragnaths and opening between paragnaths and lip of labrum. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

  • View in gallery

    Metridia lucens Boeck, 1864 (s.l.): A, lateral view of labrum-paragnath complex including anterior labral lobe (Ant lobe) and separate lobate structure just anterior to anterior labral lobe; B, enlarged view of labrum, left paragnath and left mandible. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

  • View in gallery

    Metridia lucens Boeck, 1864 (s.l.): A, confocal: ventral-lateral view of complex rotated to show lobes on distal posterior surface of labrum; B, confocal: ventral view showing anterior labral lobe wrapped around labrum.

  • View in gallery

    Neocalanus cristatus (Krøyer, 1848): A, lateral view of labrum-paragnath complex including anterior labral lobe (Ant lobe) but without mandible; B, enlarged view of labrum, lip and paragnaths. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

  • View in gallery

    Neocalanus cristatus (Krøyer, 1848): A, confocal: lateral view of complex to show nature of armature elements on labrum and paragnath; B, confocal: ventral view with image rotated to show thickness of labrum and proximity of first maxillae to paragnath base. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

  • View in gallery

    Neocalanus cristatus (Krøyer, 1848): sagittal section through anterior labral lobe and labrum-paragnath complex.

  • View in gallery

    Paraeuchaeta elongata (Esterly, 1913): A, enlarged view of labrum and paragnath; B, confocal: ventral view from a posterior angle to show the position of the supralabral lobe relative to the labrum. The ridge just posterior to the setae is an artifact where two image frames were joined. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

  • View in gallery

    Paraeuchaeta elongata (Esterly, 1913): A, confocal — ventral view to show armature of paragnaths and armature in lip area of labrum; B, enlarged ventral view to show small lip and evidence of teeth adjacent to base of paragnaths.

  • View in gallery

    Heterorhabdus tanneri (Claus, 1863): A, lateral view of labrum-paragnath complex including anterior labral lobe (Ant lobe), without mandible; B, confocal — ventral view showing paragnaths, claw on each gnathobase and labrum. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

  • View in gallery

    Heterorhabdus tanneri (Claus, 1863): A, confocal: ventral view of anterior end of labrum to show labrum lip and gnathobase claw (note groove in each claw); B, gnathobase. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

  • View in gallery

    Gnathobases: A, Eucalanus bungii bungii Johnson, 1938; B, Metridia lucens Boeck, 1864 (s.l.); C, Neocalanus cristatus (Krøyer, 1848); D, Paraeuchaeta elongata (Esterly, 1913). This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 8 8 2
Full Text Views 6 6 6
PDF Downloads 2 2 2
EPUB Downloads 0 0 0