Niche segregation between two closely similar gammarids (Peracarida, Amphipoda) — native vs. naturalized non-native species

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Closely similar species may occupy similar niches, but usually divergence can be found in one or more traits when they inhabit the same habitat. In this study, we examined how two co-occurring gammarids — the native Gammarus fossarum and the naturalized G. roeselii — are distributed among microhabitats, depending on their sympatric or allopatric distribution. We hypothesized that the larger body-sized species (G. roeselii), exploiting their advantages in competition, restrict smaller species to microhabitats with smaller particle sizes. Four headwaters were sampled in the Mecsek Mountains (SW Hungary) in May, July and October 2009, and 37 local scale environmental variables at each site were measured. Although G. fossarum is smaller in size, significantly more individuals were collected from the more favourable lithal and biotic microhabitats, whereas a strong negative association was observed between the two species. Gammarus roeselii occurred at sites characterized by degraded riparian vegetation, which indicates stronger anthropogenic impacts, but still has a disadvantage in competition in mountainous streams under anthropogenic influence.

Niche segregation between two closely similar gammarids (Peracarida, Amphipoda) — native vs. naturalized non-native species

in Crustaceana



AQEM Consortium2002. ‘Manual for the application of the AQEM method. A comprehensive method to assess European streams using benthic macroinvertebrates developed for the purpose of the Water Framework Directive. Version 1.0.’

BerackoP.SýkorováA.ŠtanglerA.2012. Life history, secondary production and population dynamics of Gammarus fossarum (Koch, 1836) in a constant temperature stream. Biologia67: 164-171.

Bij de VaateA.JażdżewskiK.KetelaarsH. A. H.GollaschS.van der VeldeG.2002. Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences59: 1159-1174.

BódisE.BorzaP.PotyóI.PukyM.WeiperthA.GutiG.2012. Invasive mollusc, crustacean, fish and reptile species along the Hungarian section of the River Danube and some connected waters. Acta Zoologica Academiae Scientarium Hungaricae58(Supplement): 29-45.

BölöniJ.MolnárZs.IllyésE.KunA.2007. A new habitat classification and manual for standardized habitat mapping. Annali di Botanica (n. s.) 7: 55-76.

BorzaP.2009. First record of the Ponto-Caspian amphipod Echinogammarus trichiatus (Martynov, 1932) (= Chaetogammarus trichiatus) (Crustacea: Amphipoda) for the Middle-Danube (Slovakia and Hungary). Aquatic Invasions4: 693-696.

CărăuşuS.DobreanuE.ManolacheC.1955. Amphipoda forme salmastre şi de apă dulce. Fauna Republicii Populare Romîne Crustacea4: 1-407.

CzarneckaM.KobakJ.WisniewskiR.2010. Preferences of juveniles and adults of the invasive Ponto-Caspian amphipod Pontogammarus robustoides for various species of macrophytes and artificial substrata. Hydrobiologia655: 79-88.

DahlJ.GreenbergL.1996. Effects of habitat structure on habitat use by Gammarus pulex in artificial streams. Freshwater Biology36: 487-495.

DickJ. T. A.1996. Post-invasion amphipod communities of Lough Neagh, Northern Ireland: influences of habitat selection and mutual predation. Journal of Animal Ecology65: 756-767.

FrühD.StollS.HaaseP.2012. Physicochemical and morphological degradation of stream and river habitats increases invasion risk. Biological Invasions14: 2243-2253.

GrabowskiM.BacelaK.KonopackaA.2007. How to be an invasive gammarid — comparison of life history traits. Hydrobiologia590: 75-84.

GrabowskiM.KonopackaA.JażdżewskiK.JanowskaE.2006. Invasions of alien Gammarid species and retreat of natives in the Vistula Lagoon (Baltic Sea, Poland). Helgoland Marine Research60: 90-97.

HackerS. D.SteneckR. S.1990. Habitat architecture and the abundance and body-size-dependent habitat selection of a phytal amphipod. Ecology71: 2269-2285.

HeringD.MoogO.SandinL.VerdonschotP. F. M.2004. Overview and application of the AQEM assessment system. Hydrobiologia516: 1-20.

JanetzkyW.1994. Distribution of the genus Gammarus (Amphipoda: Gammaridae) in the River Hunte and its tributaries (Lower Saxony, northern Germany). Hydrobiologia294: 23-34.

JażdżewskiK.1980. Range extensions of some gammaridean species in European in land waters caused by human activity. Crustaceana Supplement6: 84-107.

JażdżewskiK.KonopackaA.2000. Immigration history and present distribution of alien crustaceans in Polish waters. In: J. C. von Vaupel Klein & F. R. Schram (eds.) The biodiversity crisis and Crustacea. Journal of Experimental Marine Biology and Ecology. Crustacean Issues 12: 55-64.

JażdżewskiK.KonopackaA.GrabowskiM.2005. Native and alien malacostracan Crustacea along the Polish Baltic Sea coast in the twentieth century. Oceanological and Hydrobiological Studies24 (Supplement 1/2005): 195-208.

JażdżewskiK.RouxA. L.1988. Biogéographie de Gammarus roeselii Gervais en Europe, en particulier en France et en Pologne. Crustaceana Supplement13: 272-277.

JosensG.bij de VaateA.Usseglio-PolateraP.CammaertsR.ChérotF.GrisezF.VerboonenP.Vanden BosscheJ.-P.2005. Native and exotic Amphipoda and other Peracarida in the River Meuse: new assemblages emerge from a fast changing fauna. Hydrobiologia542: 203-220.

KaldonskiN.LagrueC.MotreuilS.RigaudT.BollacheL.2008. Habitat segregation mediates predation by the benthic fish Cottus gobio on the exotic amphipod species Gammarus roeseli. Naturwissenschaften9: 839-844.

KaramanG. S.PinksterS.1977. Freshwater Gammarus species from Europe, North Africa and adjacent regions of Asia (Crustacea, Amphipoda). Part 1. Gammarus pulex-group and related species. Bijdragen tot de Dierkunde47: 1-97.

KleyA.KinzlerW.SchankY.MayerG.WaloszekD.MaierG.2009. Influence of substrate preference and complexity on co-existence of two non-native gammarideans (Crustacea: Amphipoda). Aquatic Ecology43: 1047-1059.

KleyA.MaierG.2005. An example of niche partitioning between Dikerogammarus villosus and other invasive and native gammarids: a field study. Journal of Limnology64: 85-88.

KonopackaA.JażdżewskiK.2002. Obesogammarus crassus (G. O. Sars, 1894) — one more Ponto-Caspian gammarid species in Polish waters. Fragmenta Faunistica45: 19-26.

KontschánJ.MuskóI.MurányiD.2002. A felszíni vizekben elõforduló felemáslábú rákok (Crustacea: Amphipoda) rövid határozója és elõfordulásuk Magyarországon. (Short identification key and occurrence of the freshwater amphipods in Hungary) Folia Historico-Naturalia Musei Matraensis 26: 151-157.

KorpinenS.WesterbomM.2009. Microhabitat segregation of the amphipod genus Gammarus (Crustacea: Amphipoda) in the Northern Baltic Sea. Marine Biology157: 361-370.

MacNeilC.PlatvoetD.2005. The predatory impact of the freshwater invader Dikerogammarus villosus on native Gammarus pulex (Crustacea: Amphipoda); influences of differential microdistribution and food resources. Journal of Zoology267: 31-38.

MayerG.MaasA.WaloszekD.2012. Coexisting native and non-indigenous gammarideans in Lake Constance — comparative morphology of mouthparts. Spixiana35: 269-285.

McGrathE. K.PeetersE. T. H. M.BeijerJ. A. J.SchefferM.2007. Habitat-mediated cannibalism and microhabitat restriction in the stream invertebrate Gammarus pulex. Hydrobiologia589: 155-164.

MeijeringM. P. D.1972. Experimental studies on drift and upstream movements of Gammarids in running waters. Archiv für Hydrobiologie70: 133-205.

NesemannH.MoogO.PöcklM.2002. Crustacea: Amphipoda Isopoda Decapoda. — Part III. In: O. Moog (ed.) Fauna Aquatica Austriaca Edition 2002. (Wasserwirtschaftskataster Bundesministerium für Land- und Forstwirtschaft Umwelt und Wasserwirtschaft Vienna).

NesemannH.PöcklM.WittmannK. J.1995. Distribution of epigean Malacostraca in the middle and upper Danube (Hungary, Austria, Germany). Miscellanea Zoologica Hungarica10: 49-68.

OlyslagerN. J.WilliamsD. D.1993. Microhabitat selection by the lotic amphipod Gammarus pseudolimnaeus Bousfield: mechanism for evaluating local substrate and current suitability. Canadian Journal of Zoology71: 2401-2409.

PiscartC.BergerotB.LaffaillecP.MarmonierP.2009. Are amphipod invaders a threat to regional biodiversity? Biological Invasions12: 853-863.

PiscartC.ManachA.CoppG. H.MarmonierP.2007. Distribution and microhabitats of native and non-native gammarids (Amphipoda, Crustacea) in Brittany, with particular reference to the endangered endemic sub-species Gammarus duebeni celticus. Journal of Biogeography34: 524-533.

PiscartC.Mermillod-BlondinF.MaazouziC.MerigouxS.MarmonierP.2011a. Potential impact of invasive amphipods on leaf litter recycling in aquatic ecosystems. Biological Invasions13: 2861-2868.

PiscartC.RousselJ. M.DickJ. T. A.GrosboisG.MarmonierP.2011b. Effects of coexistence on habitat use and trophic ecology of interacting native and invasive amphipods. Freshwater Biology56: 325-334.

PöcklM.1992. Effects of temperature, age and body size on moulting and growth in the freshwater amphipods Gammarus fossarum and G. roeseli. Freshwater Biology27: 211-225.

PöcklM.HumpeschU. H.1990. Intra- and inter-specific variations in egg survival and brood development time for Austrian populations of Gammarus fossarum and Gammarus roeseli (Crustacea, Amphipoda). Freshwater Biology23: 441-445.

PöcklM.WebbB. W.SutcliffeD. W.2003. Life history and reproductive capacity of Gammarus fossarum and Gammarus roeselii (Crustacea — Amphipoda) under naturally fluctuating water temperatures a simulation study. Freshwater Biology48: 53-66.

R Development Core Team2011. R: a language and environment for statistical computing available online at (R Foundation for Statistical ComputingVienna).

SchmeraD.ErősT.GreenwoodM. T.2007. Spatial organization of a shredder guild of caddisflies (Trichoptera) in a riffle — searching for the effect of competition. Limnologica37: 129-136.

SchoenerT. W.1983. Field experiments on interspecific competition. The American Naturalist122: 240-284.

TilmanD.1987. The importance of mechanisms of interspecific competition. The American Naturalist129: 769-774.

TomanM. J.DallP. C.1998. Respiratory levels and adaptations in four freshwater species of Gammarus (Crustacea: Amphipoda). International Review of Hydrobiology83: 251-263.

TúriÁ.GidóZs.LakatosGy.2003. Bolharák (Gammarus) fajok koegzisztenciája a Zempléni-hegység forrásaiban és patakjaiban. [Coexistence of freshwater shrimps in springs and streams at Zemplén Mountains (NE Hungary)]. Journal of the Hungarian Hydrological Society83: 154-155.

Van der VeldeG.RajagopalS.MuskoI.bij de VaateA.2000. Ecological impact of crustacean invaders. General considerations and examples from the Rhine River. In: J. C. von Vaupel Klein & F. R. Schram (eds.) The Biodiversity Crisis and Crustacea. 4th International Crustacean Congress Amsterdam July 1998 vol. 2. A. A. Balkema Publishers Rotterdam Brookfield Crustacean Issues 12: 3-33.

Van OverdijkC. D. A.GrigorovichI. A.MabeeT.RayW. J.CiborowskijJ. J. H.MacisaacH. J.2003. Microhabitat selection by the invasive amphipod Echinogammarus ischnus and native Gammarus fasciatus in laboratory experiments and in Lake Erie. Freshwater Biology48: 567-578.

Van RielM. C.HealyE. P.van der VeldeG.bij de VaateA.2007. Interference competition among native and invader amphipods. Acta Oecologica31: 282-289.

Van RielM. C.van der VeldeG.bij de VaateA.2009. Interference competition between alien invasive gammaridean species. Biological Invasions11: 2119-2132.

WijnhovenS.van RielM. C.van der VeldeG.2003. Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquatic Ecology37: 151-158.


  • View in gallery

    Map of the study area. Filled circles (●) mark sites where Gammarus fossarum Koch, in Panzer 1836 and Gammarus roeselii Gervais, 1835 co-exist and open circles (○) mark sites where G. fossarum is the only occurring gammarid. Petőczi-árok: Petőczi stream (Bakonya; 46°07′17″N 18°03′42″E; 187 m a.s.l.); Vízfő: Vízfő spring (Orfű; 46°08′21″N 18°09′37″E; 219 m a.s.l.); Hidasi-völgy: Hidas stream (Komló; 46°11′46″N 18°19′06″E; 319 m a.s.l.), Ól-völgy: Ól stream (Szászvár, 46°15′49″N 18°22′01″E; 218 m a.s.l.).

  • View in gallery

    Based on the mean of abundances, Gammarus fossarum Koch, in Panzer 1836 showed no significant microhabitat preference in the case of its single occurrence in each season (□, interquartile range; —, median; ⊤, SEM; , outlier).

  • View in gallery

    Based on the mean of abundances, it is clearly visible that Gammarus fossarum Koch, in Panzer 1836 showed a remarkable change in microhabitat preference in the case of co-existence with Gammarus roeselii Gervais, 1835 compared with the habitat choice of its single occurrences (□, interquartile range; —, median; ⊤, SEM; , outlier).

  • View in gallery

    Based on the mean of abundances, a definite preference of microhabitat of Gammarus roeselii Gervais, 1835 was found in the case of co-existence with Gammarus fossarum Koch, in Panzer 1836 in each season (□, interquartile range; —, median; ⊤, SEM; , outlier).

  • View in gallery

    Comparison of the abiotic conditions of the two sites with different species composition suggests the degraded state of the sites where both species co-occurred (○, proportion of xylal microhabitat at the 100 m section; □, water-depth; ◇, concentration of Ca2+ ion; ×, % shrubs (0-1 m); △, number of degraded riparian habitats; ▽, number of degraded habitats at the nearest hill-side; , the proportion of the forest coverage at the nearest slopes).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 13 13 5
Full Text Views 4 4 4
PDF Downloads 2 2 2
EPUB Downloads 0 0 0