Physiological changes and acetylcholinesterase activity in the cladoceran Moina macrocopa (Straus, 1820) exposed to mercury and sodium dodecyl sulfate

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Mercury is one of the most deleterious heavy metals in aquatic systems. Sodium dodecyl sulphate (SDS) is a common surfactant, which may reach relatively high concentrations in aquatic systems. In the present study, water fleas (Moina macrocopa (Straus, 1820)) were exposed to different mercury and SDS concentrations for 24 and 48 h to examine the toxic effect of the two reagents on heart rate, body size and acetylcholinesterase (AChE) activity. The 24 h and 48 h LC50 values were 4.93 and 3.51 μg/l for mercury, and 12.74 and 4.55 mg/l for SDS, respectively. Increased heart rate was observed in water fleas treated with 1.5 and 2.0 μg/l mercury for 24 h and 48 h, suggesting that the animals were stressed. The size of water fleas decreased with increasing mercury concentration. An increase in SDS concentration and exposure time had a negative impact on the heart rate and size of the water fleas. A pronounced inhibition of AChE activity was observed in water fleas exposed to mercury and SDS concurrently. However, the AChE inhibition level was different between mercury and SDS, which may be inferred by different pollutants. Although mercury and SDS have different modes of action, the relation between decrease of physiological parameters and AChE inhibition were relatively close for these two compounds. We conclude that measurements of AChE activity can be used as a biomarker for different aquatic pollutants.

Physiological changes and acetylcholinesterase activity in the cladoceran Moina macrocopa (Straus, 1820) exposed to mercury and sodium dodecyl sulfate

in Crustaceana



BaatrupE.BayleyM.1993. Effects of the pyrethroid insecticide cypermethrin on the locomotor activity of the wolf spider Pardosa amentata: quantitative analysis employing computer-automated video tracking. Ecotoxicol. Environ. Safe.26: 138-152.

BaerK. N.OwensK. D.1999. Evaluation of selected endocrine disrupting compounds on sex determination in Daphnia magna using reduced photoperiod and different feeding rates. Bull. Envrion. Contam. Toxicol.62: 214-221.

BaillieulM.BlustR.1999. Analysis of the swimming velocity of cadmium-stressed Daphnia magna. Aquat. Toxicol.44: 245-254.

BairdD. J.BarberI.CalowP.1990. Clonal variation in general responses of Daphnia magna Straus to toxic stress. I. Chronic life-history effects. Funct. Ecol.4: 399-407.

BaumerC.PirowR.PaulR. J.2002. Circulatory oxygen transport in the water flea Daphnia magna. J. Comp. Physiol. B172: 275-285.

BradfordM.1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem.72: 248-254.

CampbellA. K.WannK. T.MatthewsS. B.2004. Lactose causes heart arrhythmia in the water flea Daphnia pulex. Comp. Biochem. Phys. B139: 225-234.

CounterS. A.BuchananL. H.2004. Mercury exposure in children: a review. Toxicol. Appl. Pharmacol.198: 209-230.

DaviesR.ZouE. M.2012. Polybrominated diphenyl ethers disrupt molting in neonatal Daphnia magna. Ecotoxicology21: 1371-1380.

DayK. E.ScottI. M.1990. Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquat. Toxicol.18: 101-113.

DeviM.FingermanM.1995. Inhibition of acetylcholinesterase activity in the central nervous system of the red swamp crayfish, Procambarus clarkii, by mercury, cadmium, and lead. Bull. Environ. Contam. Toxicol.55: 746-750.

DiamantinoT. C.AlmeidaE.SoaresA. M.GuilherminoL.2003. Characterization of cholinesterases from Daphnia magna Straus and their inhibition by zinc. B. Environ. Contam. Tox.71: 0219-0225.

DodsonS. I.RamcharanC.1991. Size-specific swimming behavior of Daphnia pulex. J. Plankton Res.13: 1367-1379.

ElumalaiM.AntunesC.GuilherminoL.2007. Enzymatic biomarker in the crab Carcinus maenas from the Minho River estuary (NW Portugal) exposed to zinc and mercury. Chemosphere66: 1249-1255.

FrascoM.FournierD.CarvalhoF.GuilherminoL.2005. Do metals inhibit cholinesterase (AChE)? Implementation of assay conditions for the use of AChE activity as a biomarker of metal toxicity. Biomarkers10: 360-375.

FultonM. H.KeyP. B.2001. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ. Toxicol. Chem.20: 37-45.

GillT. S.TewariH.PandeJ.1990. Use of fish enzyme system to monitoring water quality: effects of mercury on tissue enzymes. Comp. Biochem. Phys.97C: 287-292.

GliwiczM. Z.SieniawskaA.1986. Filtering activity of Daphnia in low concentrations of a pesticide. Limnol. Oceanogr.31: 1132-1138.

GolovanovaI. L.2008. Effects of heavy metals on the physiological and biochemical status of fish and aquatic invertebrates. Inland. Water. Biol.1: 93-101.

GreenF. A.AndersonJ. W.PetrocelliS. R.PresleyB. J.SimsR.1976. Effect of mercury on the survival, respiration, and growth of postlarval white shrimp, Penaeus setiferus. Mar. Biol.37: 75-81.

GuilherminoL.DiamantinoT. C.RibeiroR.GonsalvesF.SoaresA. M.1997. Suitability of test media containing EDTA for the evaluation of acute metal toxicity to Daphnia magna Straus. Ecotoxicol. Environ. Safe.38: 292-295.

GuilherminoL.LacerdaM. N.NogueiraA. J. A.SoaresA. M. V. M.2000. In vitro and in vivo inhibition of Daphnia magna acetylcholinesterase by surfactant agents: possible implications for contamination biomonitoring. Sci. Total Environ.247: 137-141.

GuilherminoL.LopesM. C.CarvalhoA. P.SoaresA. M. V. M.1996. Acetylcholinesterase activity in juveniles of Daphnia magna Straus. Bull. Environ. Contam. Toxicol.57: 979-985.

IssartelJ.BouloV.WallonS.GeffardO.CharmantierG.2010. Cellular and molecular osmoregulatory responses to cadmium exposure in Gammarus fossarum (Crustacea, Amphipoda). Chemosphere81: 701-710.

JonesM.FoltC.GuardaS.1991. Characterizing individual, population and community effects of sublethal levels of aquatic toxicants: an experimental case study using Daphnia. Freshwater. Biol.26: 35-44.

KnopsM.AltenburgerR.SegnerH.2001. Alterations of physiological energetics, growth and reproduction of Daphnia magna under toxicant stress. Aquat. Toxicol.53: 79-90.

LabrotF.RiberaD.SaintD. M.NarbonneJ. F.1996. In vitro and in vivo studies of potential biomarkers of lead and uranium contamination: lipid peroxidation, acetylcholinesterase, catalase and glutathione peroxidase activities in three non-mammalian species. Biomarkers1: 21-28.

LamkemeyerT.ZeisB.PaulR. J.2003. Temperature acclimation influences temperature-related behaviour as well as oxygen transport physiology and biochemistry in the water flea Daphnia magna. Can. J. Zool.81: 237-249.

LauL. D.RodriguezR.HenneryS.ManuelD.1998. Photoreduction of mercuric salt solutions at high pH. Envrion. Sci. Technol.32: 670-675.

LitterM. I.1999. Heterogeneous photocatalysis transition of metal ions in photocatalytic systems. Appl. Catal. B: Environ. Catal.23: 89-114.

LittleE. E.ArcheskiR. D.FlerovB. A.KozlovskayaV. I.1990. Behavioral indicators of sublethal toxicity in rainbow trout. Arch. Environ. Contam. Toxicol.19: 380-385.

LovernS. B.StricklerJ. R.KlaperR.2007. Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ. Sci. Technol.41: 4465-4470.

MahassenM. E. D. G.MadlenM. H.FaikaI. K.EmanY. M.2009. Effects of salinity on survival, growth and reproduction of the water flea, Daphnia magna. Nature and Science7: 28-42.

MalcolmB. A.1995. The picornaviral 3C proteinases. Protein Sci.4: 1439-1445.

MarquesR. C.BernardiJ. V. E.DoreaJ. G.BastosW. R.MalmO.2008. Principal component analysis and discrimination of variables associated with pre- and post-natal exposure to mercury. Int. J. Hyg. Environ. Health211: 606-614.

Martinez-TabcheL.MoraB. R.FazC. G.CastelanI. G.OrtizM. M.GonzalezV. U.FloresM. O.1997. Toxic effect of sodium dodecylbenzenesulfonate, lead, petroleum, and their mixtures on the activity of acetylcholinesterase of Moina macrocopa in vitro. Environ. Toxicol. Water Qual.12: 211-215.

MoreiraS. M.GuilherminoL.2005. The use of Mytilus galloprovincialis acetylcholinesterase and glutathione S-transferases activities as biomarkers of environmental contamination along the northwest Portuguese coast. Environ. Monit. Assess.105: 309-325.

OlsonD. L.ChristensenG. M.1980. Effects of water pollutants and other chemicals on fish acetylcholinesterase (in-vitro). Environ. Res.21: 327-335.

ParkS.ChoiK.2008. Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology17: 526-538.

PaulR. J.ColmorgenM.PirowR.ChenY. H.TsaiM. C.1998. Systemic and metabolic responses in Daphnia magna to anoxia. Comp. Biochem. Phys. A120: 519-530.

PayneJ. F.MathieuA.MelvinW.FanceyL. L.1996. Acetylcholinesterase, an old biomarker with a new future? Field trials in association with two urban rivers and a paper mill in Newfoundland. Mar. Pollut. Bull.32: 225-231.

PericL.PetrovicS.2011. Acetylcholinesterase activity in the gills of mussels Mytilus galloprovincialis from the north-eastern Adriatic coast. Fresen. Environ. Bull.20: 2855-2860.

PetrusekA.2000. Moina (Crustacea: Anomopoda, Moinidae) in the Czech Republic: a review. Acta Soc. Zool. Biochem.66: 213-220.

QiuG.FengX.WangS.FuX.ShangL.2009. Mercury distribution and speciation in water and fish from abandoned Hg mines in Wanshan, Guizhou province, China. Sci. Total Environ.407: 5162-5168.

SchmidtG. H.IbrahimN. H. M.1994. Heavy metal content (Hg2+, Cd2+, Pb2+) various body parts: its impact on cholinesterase activity and binding glycoproteins in the grasshopper Aiolopusthal assimus adults. Ecotoxicol. Environ. Safe.29: 148-164.

ShawB. P.PanigrahiA. K.1990. Brain AChE activity studies in some fish species collected from a mercury contaminated estuary. Water Air Soil Pollution53: 327-334.

SureshA.SivaramakrishnaB.VictoriammaP. C.RadhakrishnaiahK.1992. Comparative study on the inhibition of acetylcholinesterase activity in the freshwater fish Cyprinus carpio by mercury and zinc. Int. J. Biochem. Cell. B26: 367-375.

TaskinV.Gocmen-TaskinB.KucukakyuzK.KenceM.2009. Potential biomonitoring use of variations in esterase, glutathione s-transferase, and acetylcholinesterase activities in Musca domestica L. Fresen. Environ. Bull.18: 2079-2085.

TsuiM. T. K.WangW. X.2006. Acute toxicity of mercury to Daphnia magna under different conditions. Environ. Sci. Technol.40: 4025-4030.

VeselaS.VijverbergJ.2007. Effect of body size on toxicity of zinc in neonates of four differently sized Daphnia species. Aquat. Toxicol.41: 67-73.

VidalD. E.HorneA. J.2003. Inheritance of mercury tolerance in the aquatic oligochaete Tubifex tubifex. Environ. Toxicol. Chem.22: 2130-2135.

WHO1992. Environmental health criteria 134: cadmium (1st ed.). (World Health OrganizationGeneva).

ZouE.2005. Impacts of xenobiotics on crustacean molting: the invisible endocrine disruption. Integr. Comp. Biol.45: 33-38.


  • View in gallery

    Effects of Hg2+ on heart rate in the water flea Moina macrocopa (Straus, 1820). Data represent means ± SD of 10 animals. P<0.05 versus the respective control.

  • View in gallery

    Effects of SDS on heart rate in the water flea Moina macrocopa (Straus, 1820). Data represent means ± SD of 10 animals. P<0.05 versus the respective control.

  • View in gallery

    Effects of Hg2+ on size in water flea Moina macrocopa (Straus, 1820). Data represent means ± SD of 10 animals. P<0.05 versus the respective control.

  • View in gallery

    Effects of SDS on size in water flea Moina macrocopa (Straus, 1820). Data represent means ± SD of 10 animals. P<0.05, versus the respective control.

  • View in gallery

    Effects of Hg on AChE activity in water flea Moina macrocopa (Straus, 1820). P<0.05, versus the respective control.

  • View in gallery

    Effects of SDS on AChE activity in water flea Moina macrocopa (Straus, 1820). P<0.05, versus the respective control.


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 41 41 21
Full Text Views 79 79 71
PDF Downloads 3 3 2
EPUB Downloads 0 0 0