Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
Seasonal changes in body size (prosome length: PL) and oil sac volume (OSV) of the three most numerically abundant copepods in Ishikari Bay, northern Sea of Japan, Paracalanus parvus (Claus, 1863), Pseudocalanus newmani Frost, 1989 and Oithona similis Claus, 1866, were studied using monthly samples collected through vertical hauls of a 100-μm mesh NORPAC net from March, 2001 to May, 2002. Seasonal changes in PL were common for the three species and were more pronounced during a cold spring. PL was negatively correlated with temperature, and this relationship was described well using the Bělehrádek equation. Seasonal changes in OSV exhibited a species-specific pattern, i.e., OSV was greater during a warm summer for P. parvus and was greater during a cold spring for P. newmani and O. similis. The OSV peak period corresponded with the optimal thermal season of each species. The relative OSV to prosome volume of the small copepods (0.6-0.8%) was substantially lower than that of the large copepods (20-32%). These facts suggest that the oil sac of small copepods is not used for overwintering or diapauses or during periods of food scarcity, but is instead used as the primary energy source for reproduction, which occurs during the optimum thermal season of each species.
Les variations saisonnières de la taille du corps (longueur du prosome: PL) et du volume du sac à huile (OSV) chez les trois copépodes les plus abondants numériquement dans la baie de Ishikari, au nord de la Mer du Japon, Paracalanus parvus (Claus, 1863), Pseudocalanus newmani Frost, 1989 et Oithona similis Claus, 1866, ont été étudiés à partir d’échantillons mensuels collectés par des traits verticaux de filet NORPAC de 100 μm de vide de maille de mars 2001 à mai 2002. Les changements saisonniers de PL étaient les mêmes pour les trois espèces et étaient plus prononcés lors d’un printemps froid. PL était corrélée négativement à la température, et cette relation a été bien décrite avec l’équation de Bělehrádek. Les changements saisonniers de OSV ont montré un pattern spécifique de l’espèce, c’est-à-dire un OSV plus élevé au cours d’un été chaud pour P. parvus et plus élevé lors d’un printemps froid chez P. newmani et O. similis. La période de pic de OSV correspond à la saison de température optimale de l’eau de chaque espèce. Le rapport OSV / volume du prosome des petits copépodes (0,6-0,8%) était sensiblement inférieur à celui des grands copépodes (20-32%). Ces faits suggèrent que le sac à huile des copépodes de petite taille n’est pas utilisé lors de l’hivernage ou des diapauses ou pendant les périodes de rareté de nourriture, mais est utilisé plutôt comme la source d’énergie primaire pour la reproduction, qui intervient à la saison d’optimum thermique de chaque espèce.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Auel H., Hagen W., 2005. Body mass and lipid dynamics of Arctic and Antarctic deep-sea copepods (Calanoida, Paraeuchaeta): ontogenetic and seasonal trends. Deep-Sea Res. I, 52: 1272-1283.
Corkett C. J., McLaren I. A., 1969. Egg production and oil storage by the copepod Pseudocalanus in the laboratory. Journ. Exp. Mar. Biol. Ecol., 3: 90-105.
Corkett C. J., McLaren I. A., 1978. The biology of Pseudocalanus. Adv. Mar. Biol., 15: 1-231.
Deevey G. B., 1960. Relative effects of temperature and food on seasonal variations in length of marine copepods in some eastern American and western European waters. Bull. Bingham Oceanogr. Collect., 17: 54-86.
Dolganova N. T., Hirakawa K., Takahashi T., 1999. Seasonal variability of the copepod assemblage and its relationship with oceanographic structure at Yamato Tai, central Japan Sea. Bull. Japan Sea Natl. Fish. Res. Inst., 49: 13-35.
Dvoretsky V. G., Dvoretsky A. G., 2009. Life cycle of Oithona similis (Copepoda: Cyclopoida) in Kola Bay (Barents Sea). Mar. Biol., 156: 1433-1446.
Halsband C., Hirche H. J., 2001. Reproductive cycles of dominant calanoid copepods in the North Sea. Mar. Ecol. Prog. Ser., 209: 219-229.
Hirakawa K., Imamura A., 1993. Seasonal abundance and life history of Metridia pacifica (Copepoda: Calanoida) in Toyama Bay, southern Japan Sea. Bull. Plankton Soc. Japan, 40: 41-54.
Iguchi N., Wada Y., Hirakawa H., 1990. Seasonal changes in the copepod assemblage as food for larval anchovy in western Wakasa Bay, southern Japan Sea. Bull. Japan Sea Natl. Fish. Res. Inst., 49: 69-80. [In Japanese.]
Kattner G., Krause M., 1989. Seasonal variations of lipids (wax esters, fatty acids and alcohols) in calanoid copepods from the North Sea. Mar. Chem., 26: 261-275.
Lee R. F., Hagen W., Kattner G., 2006. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser., 307: 273-306.
Liang D., Uye S., 1996. Population dynamics and production of the planktonic copepods in a eutrophic inlet of the Inland Sea of Japan. II. Acartia omorii. Mar. Biol., 125: 109-117.
Liang D., Uye S., Onbé T., 1996. Population dynamics and production of the planktonic copepods in a eutrophic inlet of the Inland Sea of Japan. I. Centropages abdominalis. Mar. Biol., 124: 527-536.
Lischka S., Hagen W., 2007. Seasonal lipid dynamics of the copepods Pseudocalanus minutus (Calanoida) and Oithona similis (Cyclopoida) in the Arctic Kongsfjorden (Svalbard). Mar. Biol., 150(3): 443-454.
Mauchline J., 1998. The biology of calanoid copepods. Adv. Mar. Biol., 33: 1-710.
Motoda S., 1957. North Pacific standard plankton net. Info. Bull. Planktology Japan, 4: 13-15.
Narcy F., Gasparini S., Falk-Petersen S., Mayzaud P., 2009. Seasonal and individual variability of lipid reserves in Oithona similis (Cyclopoida) in Arctic fjord. Polar Biol., 32: 233-242.
Norrbin M. F., Olsen R.-E., Tande K. S., 1990. Seasonal variation in lipid class and fatty acid composition of two small copepods in Balsfjorden, northern Norway. Mar. Biol., 105: 205-211.
Pepin P., Head E. J. H., 2009. Seasonal and depth-dependent variations in the size and lipid contents of stage 5 copepodites of Calanus finmarchicus in the waters of the Newfoundland shelf and the Labrador Sea. Deep-Sea Res. I, 56: 989-1002.
Peters J., Renz J., van Beusekom J., Boersma M., Hagen W., 2006. Trophodynamics and seasonal cycle of the copepod Pseudocalanus acuspes in the Central Baltic Sea (Bornholm Basin): evidence from lipid composition. Mar. Biol., 149: 1417-1429.
Plourde S., Runge J. A., 1993. Reproduction of the planktonic copepod Calanus finmarchicus in the Lower St. Lawrence Estuary: relation to the cycle of phytoplankton production and evidence for a Calanus pump. Mar. Ecol. Prog. Ser., 102: 217-227.
Renz J., Mengedoht D., Hirche H.-J., 2008. Reproduction, growth and secondary production of Pseudocalanus elongatus Boeck (Copepoda, Calanoida) in the southern North Sea. Journ. Plankton Res., 30: 511-528.
Renz J., Peters J., Hirche H.-J., 2007. Life cycle of Pseudocalanus acuspes Giesbrecht (Copepoda, Calanoida) in the Central Baltic Sea: II. Reproduction, growth and secondary production. Mar. Biol., 151: 515-527.
Takahashi T., Hirakawa K., 2001. Day-night vertical distributions of the winter and spring copepod assemblage in Toyama Bay, southern Japan Sea, with special reference to Metridia pacifica and Oithona atlantica. Bull. Plankton Soc. Japan, 48: 1-13.
Vinogradov M. E., Arashkevich E. G., Ilchenko S. V., 1992. The ecology of the Calanus ponticus population in the deeper layer of its concentration in the Black Sea. Journ. Plankton Res., 14: 447-458.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 449 | 35 | 4 |
Full Text Views | 147 | 1 | 1 |
PDF Views & Downloads | 15 | 2 | 2 |
Seasonal changes in body size (prosome length: PL) and oil sac volume (OSV) of the three most numerically abundant copepods in Ishikari Bay, northern Sea of Japan, Paracalanus parvus (Claus, 1863), Pseudocalanus newmani Frost, 1989 and Oithona similis Claus, 1866, were studied using monthly samples collected through vertical hauls of a 100-μm mesh NORPAC net from March, 2001 to May, 2002. Seasonal changes in PL were common for the three species and were more pronounced during a cold spring. PL was negatively correlated with temperature, and this relationship was described well using the Bělehrádek equation. Seasonal changes in OSV exhibited a species-specific pattern, i.e., OSV was greater during a warm summer for P. parvus and was greater during a cold spring for P. newmani and O. similis. The OSV peak period corresponded with the optimal thermal season of each species. The relative OSV to prosome volume of the small copepods (0.6-0.8%) was substantially lower than that of the large copepods (20-32%). These facts suggest that the oil sac of small copepods is not used for overwintering or diapauses or during periods of food scarcity, but is instead used as the primary energy source for reproduction, which occurs during the optimum thermal season of each species.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 449 | 35 | 4 |
Full Text Views | 147 | 1 | 1 |
PDF Views & Downloads | 15 | 2 | 2 |