Life histories and distribution of ostracods with depth in western Lake Geneva (Petit-Lac), Switzerland: a reconnaissance study

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Because environmental conditions within a given basin are different for each season and at different water depth, knowledge of the life history and depth distribution of target species is important for environmental and palaeoenvironmental interpretations based on ostracod species assemblages and/or the geochemical compositions of their valves. In order to determine the distribution of species with depth as well as the life history of species from Lake Geneva, a one-year sampling campaign of living ostracods was conducted at five sites (2, 5, 13, 33 and 70 m water depth) on a monthly basis in the Petit-Lac (western basin of Lake Geneva, Switzerland). Based on the results, the different species can be classified into three groups. Littoral taxa are found at 2 and 5 m water depth and include, in decreasing numbers of individuals, Cypridopsis vidua (O. F. Müller, 1776), Pseudocandona compressa (Koch, 1838), Limnocythere inopinata (Baird, 1843), Herpetocypris reptans (Baird, 1835), Potamocypris smaragdina (Vávra, 1891), Potamocypris similis (G. W. Müller, 1912), Plesiocypridopsis newtoni (Brady & Robertson, 1870), Prionocypris zenkeri (Chyzer & Toth, 1858) and Ilyocypris sp. Brady & Norman, 1889. Sublittoral species are found in a majority at 13 m water depth and to a lesser extend at 33 m water depth and include, in decreasing numbers of individuals, Fabaeformiscandona caudata (Kaufmann, 1900), Limnocytherina sanctipatricii, Candona candida (O. F. Müller, 1776) and Isocypris beauchampi (Paris, 1920). Profundal species are found equally at 13, 33 and 70 m water depth and includes, in decreasing numbers of individuals, Cytherissa lacustris (Sars, 1863), Candona neglecta Sars, 1887 and Cypria lacustris Lilljeborg, 1890. The occurrence of Limnocytherina sanctipatricii (Brady & Robertson, 1869) is restricted from late winter to late spring when temperatures are low, while C. vidua, L. inopinata, P. smaragdina, P. similis, P. newtoni and Ilyocypris sp. occur predominantly from spring to early autumn when temperatures are high. Individuals of C. neglecta, C. candida, F. caudata, P. compressa, C. lacustris, H. reptans and Cp. lacustris occur throughout the year with juveniles and adults occurring during the same period (C. neglecta at 70 m, C. lacustris at 13, 33 and 70 m, and H. reptans at 2, 5 and 13 m water depth) or with juveniles occurring during a different period of the year than adults (C. neglecta at 13 and 33 m and C. candida, F. caudata and P. compressa at their respective depth of occurrence). Among the environmental parameters investigated, an estimate of the relationship between ostracod autoecology and environmental parameters suggests that in the Petit-Lac: (i) water temperature and substrate characteristics are important factors controlling the distribution of species with depth, (ii) water temperature is also important for determining the timing of species development and, hence, its specific life history, and (iii) water oxygen and sedimentary organic matter content is less important compared to the other environmental parameter monitored.


International Journal of Crustacean Research



AlmG., 1915. Monographie der schwedischen Süsswasser-Ostracoden nebst systematischen Besprechungen der Tribus Podocopa. Zoologiska Bidrag fran Uppsala, 4: 1-248.

BenzieJ. A. H., 1989. The distribution and habitat preference of ostracods (Crustacea, Ostracoda) in a coastal sand-dune lake, Loch of Strathbeg, Northeast Scotland. Freshwater Biology, 22: 309-321.

CarbonnelP., 1980. Les Ostracodes et leur Intérêt dans la Définition des Ecosystèmes Estuariens et de Plateforme Continentale. Essai d’Application à des Domaines Anciens. Mémoires de l’Institut de géologie du bassin d’Aquitaine, 11: 1-350.

ChivasA. R.De DeckkerP.ShelleyJ. M. G., 1986. Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia, 143: 135-142.

CIPEL, 1984. Le Léman: Synthèse 1957-1982. (CIPEL, Lausanne).

CIPEL, 2006. Rapport Campagne 2005. (CIPEL, Lausanne).

CIPEL, 2011. Rapport Campagne 2010. (CIPEL, Lausanne).

CorbariL.CarbonelP.MassabuanJ.-C., 2004. How a low tissue O2 strategy could be conserved in early crustaceans: the example of the podocopid ostracods. The Journal of Experimental Biology, 207: 4415-4425.

CurryB. B.FilippelliG. M., 2010. Episodes of low dissolved oxygen indicated by ostracodes and sediment geochemistry at Crystal Lake, Illinois, USA. Limnology and Oceanography, 55: 2403-2423.

DanielopolD. L., 1969. Recherches sur la morphologie de l’organe copulateur male chez quelques ostracodes du genre Candona Baird (fam. Cyprididae Baird). In: NealeJ. (ed.), The taxonomy, morphology and ecology of recent Ostracoda: 136-153. (Oliver & Boyd, Edinburgh).

DanielopolD. L., 1982. The preparation of ostracods limbs, for optical microscopy (dissection, staining and mounting procedures). In: MaddocksR. F. (ed.), Applications of Ostracoda to economic and scientific problems: 41-43. (University of Houston, Houston, TX).

DanielopolD. L.ItoE.WansardG.KamiyaT.CroninT. M.BaltanásA., 2002. Techniques for collection and study of Ostracoda. In: HolmesJ. A.ChivasA. R. (eds.), The Ostracoda: applications in quaternary research. Geophysical monograph, 131: 65-97. (American Geophysical Union, Washington, D.C.).

DanielopolD. L.TetardJ., 1990. Morphology of Cytherissa and Cyprideis: supplementary data on the appendages and the caryotype. Bulletin de l’Institut de Géologie du Bassin d’Aquitaine, 47: 55-67.

De DeckkerP., 2002. Ostracod palaeoecology. In: HolmesJ. A.ChivasA. R. (eds.), The Ostracoda: applications in quaternary research. Geophysical monograph, 131: 121-134. (American Geophysical Union, Washington, D.C.).

DecrouyL., 2012. Biological and environmental controls on isotopes in ostracod shells. In: HorneD. J.HolmesJ. A.Rodriguez-LazaroJ.ViehbergF., Ostracod as proxies for quaternary climate change. Developments in Quaternary Science Series, 17: 165-181.

DecrouyL.VennemannT. W.ArizteguiD., 2011a. Controls on ostracod shell geochemistry: Part 1. Variations of environmental parameters within ostracod (micro-)habitat. Geochimica et Cosmochimica Acta, 75: 7364-7379.

DecrouyL.VennemannT. W.ArizteguiD., 2011b. Controls on ostracod shell geochemistry: Part 2. Carbon and oxygen isotopes compositions. Geochimica et Cosmochimica Acta, 75: 7380-7399.

DecrouyL.VennemannT. W.ArizteguiD., 2012. Sediment penetration depth of epi- and infaunal ostracods from Lake Geneva (Switzerland). Hydrobiologia, 688: 5-23.

DelormeL. D., 1978. Distribution of freshwater ostracodes in Lake Erie. Journal of Great Lakes Research, 4: 216-220.

DelormeL. D.DonaldD., 1969. Torpidity of freshwater ostracodes. Canadian Journal of Zoology, 47: 997-999.

DussartB., 1966. Limnologie — L’Étude des Eaux Continentales. (Gauthier-Villars, Paris).

ElliottJ. M., 1977. Some methods for the statistical analysis of aamples of benthic invertebrates. Freshwater Biological Association Scientific Publication, 25.

FenwickG. D., 1984. Life history and population biology of the giant ostracod Leuroleberis zealandica (Baird, 1850) (Myodocopida). Journal of Experimental Biology and Ecology, 77: 255-289.

FergusonE. F., 1944. Studies on the seasonal life history of three species of freshwater ostracoda. American Midland Naturalist, 32: 713-727.

GandolfiA.TodeschiE. B. A.RossiV.MenozziP., 2001. Life history traits in Darwinula stevensoni (Crustacea: Ostracoda) from Southern European populations under controlled conditions and their relationships with genetic features. Journal of Limnology, 60: 1-10.

GeigerW., 1990a. The role of oxygen in the disturbance and recovery of the Cytherissa lacustris population of Mondsee (Austria). Bulletin de l’Institut de Géologie du Bassin d’Aquitaine, 47: 167-189.

GeigerW., 1990b. Field and laboratory studies on the life cycle of Cytherissa lacustris (Sars) (Crustacea, Ostracoda) with special emphasis on the role of temperature. Bulletin de l’Institut de Géologie du Bassin d’Aquitaine, 47: 191-208.

GirardclosS., 2001. Sismostratigraphie et Structure Sédimentaire en 3D d’un Bassin Lacustre du Retrait Glaciaire à nos Jours (Lac Léman, Suisse). Terre et Environnement, 33. (Institut F.-A. Forel, University of Geneva, Geneva).

HagermanL., 1967. Ostracods of the Tvärminne area, Gulf of Finland. Commentationes Biologicae Societas Scientiarum Fennicae, 30: 1-12.

HeipC., 1976a. The spatial pattern of Cyprideis torosa (Jones, 1850) (Crustacea: Ostracoda). Journal of the Marine Biological Association of the United Kingdom, 56: 179-189.

HeipC., 1976b. The life-cycle of Cyprideis torosa (Crustacea, Ostracoda). Oecologia, 24: 229-245.

HendersonP. A., 1990. Freshwater Ostracods. Synopses of the British Fauna (New Series), 42. (Universal Book Services, Oegstgeest).

HillerD., 1972. Untersuchungen zur Biologie un zur Ökologie limnischer Ostracoden aus der Umgebung von Hamburg. Archiv für Hydrobiologie (Supplement), 40: 400-497.

HorneD. J., 1983. Life-cycles of Podocopid ostracoda — a review (with particular reference to marine and brackish-water species). In: MaddocksR. F. (ed.), Applications of Ostracoda: 581-590. (University of Houston, Houston, TX).

HorneD. J.HolmesJ. A.Rodriguez-LazaroJ.ViehbergF., 2012. Ostracod as proxies for quaternary climate change. Developments in Quaternary Science Series, 17. (Elsevier Science, Amsterdam).

IkeyaN.KatoM., 2000. The life history and culturing of Xestoleberis hanaii (Crustacea, Ostracoda). Hydrobiologia, 419: 149-159.

JungwirthM., 1979. Limnocythere inopinata (Baird) (Cytheridae, Ostracoda): its distribution pattern and relation to the superficial sediments of Neusiedlersee. In: LoefflerH. (ed.), Neusiedlersee: the limnology of a shallow lake in central Europe. Monographiae Biologicae 37: 385-388. (Dr. W. Junk, The Hague).

KamiyaT., 1988. Contrasting population ecology of two species of Loxoconcha (Ostracoda, Crustacea) in recent Zostera (eelgrass) beds: adaptive differences between phytal and bottom-dwelling species. Micropaleontology, 34: 316-331.

KempfE. K.ScharfB. W., 1980. Lebende und fossile Muschelkrebse (Crustacea, Ostracoda) vom Laachersee. Mitteillungen der Pollichia, 68: 205-236.

KrutakP. R., 1971. The recent Ostracoda of Laguna Mandinga, Veracruz, Mexico. Micropaleontology, 17: 1-30.

KülköylüoğluO., 1998. Freshwater Ostracoda (Crustacea) and their quarterly occurrence in Şamlar Lake (Istanbul, Turkey). Limnologica, 28: 229-235.

KülköylüoğluO.DügelM., 2004. Ecology and spatiotemporal patterns of Ostracoda (Crustacea) from Lake Gölcük (Bolu, Turkey). Archiv für Hydrobiologie, 160: 67-83.

LöfflerH., 1969. Recent and subfossil distribution of Cytherissa lacustris in Lake Constance. Mitteilungen. Internationale Vereiningung für Theoretische und Angewandte Limnologie, 17: 240-251.

LudwigJ. A.ReynoldsJ. F., 1988. Statistical Ecology. (Wiley-InterScience, New York, NY).

MallwitzV. J., 1984. Untersuchungen zur Ökologie litoraler Ostracoden im Schmal- und Lüttauersee (Schleswig-Holstein, BRD). Archiv für Hydrobiologie, 100: 311-339.

MartensK.SavatenalintonS., 2011. A subjective checklist of the Recent, free-living, non-marine Ostracoda (Crustacea). Zootaxa, 2855: 1-79.

MbahinzirekiG.UibleinF.WinklerH., 1991. Microhabitat selection of ostracods in relation to predation and food. Hydrobiologia, 222: 115-119.

McKenzieK. G.SwainF. M., 1967. Recent ostracoda from Scammon Lagoon, Baja California. Journal of Paleontology, 41: 281-305.

MeischC., 2000. Freshwater Ostracoda of western and central Europe. Süsswasser von Mitteleuropa, 8/3. (Spektrum Akademischer Verlag, Heidelberg).

MeyersP. A., 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114: 289-302.

MezquitaF.BoronatM. D.MiracleM. R., 2002. The life history of Cyclocypris ovum (Ostracoda) in a permanent karstic lake. Archiv für Hydrobiologie, 155: 687-704.

MezquitaF.RocaJ. R.ReedJ. M.WansardG., 2005. Quantifying species-environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeography, Palaeoclimatology, Palaeoecology, 225: 93-117.

MüllerG. W., 1900. Deutschlands Süsswasser-Ostracoden. Zoologica, Original-Abhandlungen aus dem Gesamtgebiet der Zoologie, 12(30): 1-112.

NüchterleinH., 1969. Süsswasserostracoden aus Franken. Ein Beitrag zur Systematik und Ökologie der Ostracoden. Internationale Revue der gesamten Hydrobiologie, 54: 223-287.

PowellS., 1976. Einige Aspekte der Beziehung zwischen Sedimenteigenschaften und der Fortbewegung benthischer Süsswasser-Ostracoden, mit spezieller Berücksichtigung der Cytherissa lacustris (Sars). (Ph.D. Thesis, University of Vienna, Vienna).

ReymentR. A., 1975. Canonical correlation analysis of hemicytherinid and trachyleberinid ostracodes in the Niger Delta. In: SwainF. M. (ed.), Biology and paleobiology of Ostracoda. Bulletins of American Paleontology, 65: 141-146.

RickettsR. D.JohnsonT. C.BrownE. T.RasmussenK. A.RomanovskyV. V., 2001. The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeography, Palaeoclimatology, Palaeoecology, 176: 207-227.

RieradevallM.RocaJ. R., 1995. Distribution and population dynamics of ostracodes (Crustacea, Ostracoda) in a karstick lake: Lake Banyoles (Calalonia, Spain). Hydrobiologia, 310: 189-196.

RocaJ. R.BaltanásA., 1993. Ecology and distribution of Ostracoda in Pyrenean springs. Journal of Crustacean Biology, 13: 165-174.

RocaJ. R.DanielopolD. L., 1991. Exploration of interstitial habitats by the phytophilous ostracod Cypridopsis vidua (O.F. Müller): experimental evidence. Annales de Limnologie, 27: 243-252.

RocaJ. R.WansardG., 1997. Temperature influence on development and calcification of Herpetocypris brevicaudata Kaufmann, 1900 (Crustacea: Ostracoda) under experimental conditions. Hydrobiologia, 347: 91-95.

RocaJ. R.BaltanásA.UibleinF., 1993. Adaptative response in Cypridopsis vidua (Crustacea, Ostracoda) to food and shelter offered by a macrophyte (Chara fragilis). Hydrobiologia, 262: 127-131.

SavolainenI.ValtonenT., 1983. Ostracods of the north-eastern Bothnian Bay and population dynamics of the principal species. Aquilo Series Zoologica, 22: 69-76.

SchwalbA., 2003. Lacustrine ostracodes as stable isotope recorders of late-glacial and Holocene environmental dynamics and climate. Journal of Paleolimnology, 29: 267-351.

TheisenB. F., 1966. The life history of seven species of ostracods from a Danish brackish-water locality. Meddelelser fra Danmarks Fiskeri- og Havundersøgelser, N.S., 4: 215-269.

Van DoninckK.SchönI.MartensK.GoddeerisB., 2003. The life-cycle of the asexual ostracod Darwinula stevensoni (Brady & Robertson, 1870) (Crustacea, Ostracoda) in a temporate pond. Hydrobiologia, 500: 331-340.

ViehbergF. A., 2006. Freshwater ostracod assemblages and their relationship to environmental variables in waters from northeast Germany. Hydrobiologia, 571: 213-224.

von GrafensteinU.ErlenkeuserH.BrauerA.JouzelJ.JohnsenS. J., 1999. A Mid-European decadal isotope-climate record from 15,500 to 5000 years B.P. Science, 284: 1654-1657.

von GrafensteinU.ErlenkeuserH.MüllerJ.TrimbornP.AlefsJ., 1996. A 200 year mid-European air temperature record preserved in lake sediments: an extension of the δ18Op-aire temperature relation into the past. Geochimica et Cosmochimica Acta, 60: 4025-4036.

WojtasikB., 2008. Life cycle of Tonnacypris glacialis (Crustacea: Ostracoda). Polish Polar Research, 29: 33-44.

WolfJ. P., 1920. Die Ostracoden der Umgebung von Basel. Archiv für Naturgeschichte, Abteilung A, 85: 1-100.

YinY.GeigerW., 1995. Spatial distribution of ostracods related to abiotic factors in Mooswinkl Bay, Mondsee, Austria. In: RihaJ. (ed.), Ostracoda and biostratigraphy: 381-387. (A. A. Balkema, Rotterdam).


  • Geographic setting of Lake Geneva and sampling sites of this study. Locations in the Swiss coordinate system are 3 m (502,085/126,280), 5 m (502,310/126,280), 13 m (505,055/125,100), 33 m (504,860/129,555), and 70 m (506,000/128,055).

    View in gallery
  • Continuous record of water temperature at 2, 5, 13 and 33 m water depth and monthly variations of major environmental parameters at 2, 5, 13, 33 and 70 m water depth. ‘Punctual’ temp. record is the water temperature measured in situ at the time of ostracod collection, δ13CDIC is the carbon isotope composition of dissolved inorganic carbon, dissolved oxygen content is given both in mg/l and in saturation level. Temperature and isotopic data are from Decrouy et al. (2011a). Dissolved oxygen content was measured within the water column at 2.5, 5, 15, 30 and 70 m water depth at the 70 m water depth site shown in fig. 1C (data from “Service de l’Écologie de l’Eau”, SECOE) and was related to the sites of 2, 5, 13, 33 and 70 m depth to allow for comparison. This figure is published in colour in the online edition of this journal, which can be accessed via

    View in gallery
  • (A) Simplified composite cross-section of the studied zone; (B) estimated number of individuals for each species at the different sampling sites, the thicker the line, the higher the number of individuals; (C) relative individual abundances of species for sites at 13, 33 and 70 m depth, based on the annual mean number of individuals (minimal and maximal values of monthly samples are given in parentheses).

    View in gallery
  • Instar-frequency distributions based on monthly number of individuals per sample for Candona candida (O. F. Müller, 1776), Candona neglecta Sars, 1887, Fabaeformiscandona caudata (Kaufmann, 1900) and Pseudocandona compressa (Koch, 1838) at different depth in Lake Geneva. The location of the y-axes corresponds to the date of sampling given at the bottom of the figure.

    View in gallery
  • Instar-frequency distributions based on monthly number of individuals per sample for Cypria lacustris Lilljeborg, 1890, Prionocypris zenkeri (Chyzer & Toth, 1858), Herpetocypris reptans (Baird, 1835), Isocypris beauchampi (Paris, 1920) and Cypridopsis vidua (O. F. Müller, 1776) at different depth in Lake Geneva. The location of the y-axes corresponds to the date of sampling given at the bottom of the figure.

    View in gallery
  • Instar-frequency distributions based on monthly number of individuals sample for Limnocythere inopinata (Baird, 1843), Limnocytherina sanctipatricii (Brady & Robertson, 1869) and Cytherissa lacustris (Sars, 1863) at different depth in Lake Geneva. The location of the y-axes corresponds to the date of sampling given at the bottom of the figure.

    View in gallery
  • Construction of the graphical illustration showing the life-cycle of dominant species from Lake Geneva. Each concentric ring corresponds to a development stage, the younger juvenile stage being in the centre of the illustration and the adult being shown in the most external ring. Individual relative abundance is represented using a grey-scale shading; the darker the shading, the higher is the individual abundance. A black/white star is inserted to indicate when the population is dominated by males. Monthly mean water temperature is given for each month around the illustration.

    View in gallery
  • Graphical illustrations of the life-cycle of species of Candonidae Kaufmann, 1900. See fig. 7 for more information on the graphical illustration of the ostracod life-cycle.

    View in gallery
  • Graphical illustration of life-cycle of species of Cyprididae Baird, 1845 and Cytheroidea Baird, 1850. See fig. 7 for more information about the graphical illustration of the ostracod life-cycle.

    View in gallery


Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 9 9 4
Full Text Views 3 3 3
PDF Downloads 0 0 0
EPUB Downloads 0 0 0