Feeding ecology of Apocyclops procerus (Copepoda, Cyclopoida) under experimental conditions

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Copepods are key links between primary producers and higher pelagics. We investigated, for the first time, under laboratory conditions, some aspects of the reproductive behaviour and feeding preferences of Apocyclops procerus (Copepoda: Cyclopoida) under different conditions of salinity and food supply. This is also its first record for Pernambuco (NE Brazil). The females carry their eggs until their eclosion and present several cycles of egg production without being further fecundated. Egg production and adult life span were not affected by differences in salinity or food supply. Offspring predation was also observed. From the three microalgae species offered to A. procerus individuals, Thalassiosira weissflogii, Chaetoceros muelleri (Ochrophyta) and Isochrysis galbana (Haptophyta), the small round-shaped I. galbana was preferred over the large and spiny diatoms, in spite of its lower nutritional value. The high salinity tolerance and apparently omnivorous feeding habits of A. procerus may enable it to predominate in estuarine waters.

Crustaceana

International Journal of Crustacean Research

Sections

References

AliA. K.PrimicerioR.FolstadI.LiljedalS.BergeJ., 2009. Morphological correlates of mating frequency and clutch size in wild caught female Eudiaptomus graciloides (Copepoda: Calanoida). Journal of Plankton Research, 31: 389-397.

ArcifaM. S.CastilhoM. S. M.CarmouzeJ. P., 1994. Composition et évolution du zooplancton dans une lagune tropicale (Brésil) au cours d’une période marquée par une mortalité de poissons. Revue d’Hydrobiologie Tropicale, 27: 251-263.

ArndtC.SommerU., 2014. Effect of algal species and concentration on development and fatty acid composition of two harpacticoid copepods, Tisbe sp. and Tachidius discipes, and a discussion about their suitability for marine fish larvae. Aquaculture Nutrition, 20: 44-59.

BlinnD. W.HalseS. A.PinderA. M.ShielR. J.McRaeJ. M., 2004. Diatom and micro-invertebrate communities and environmental determinants in the western Australian wheatbelt: a response to salinization. Hydrobiologia, 528: 229-248.

CeballosS.KiorboeT., 2010. First evidences of sexual selection by mate choice in marine zooplankton. Oecologia, 164: 627-635.

ChangW. B.LeiC. H., 1993. Development and energy content of a brackish water copepod, Apocyclops royi (Lindberg) reared in a laboratory. Bulletin of the Institute of Zoology Academia Sinica, 32: 62-81.

DayJ.CrumpB.KempW.Yáñez-ArancibiaA., 2013. Estuarine ecology. (Wiley-Blackwell, New York, NY).

deFurP. L.RaderD. N., 1995. Aquaculture in estuaries: feast or famine? Estuaries and Coasts, 18: 2-9.

DexterD., 1993. Salinity tolerance of the copepod Apocyclops dengizicus (Lepeschkin, 1900), a key food-chain organism in the Salton-sea, California. Hydrobiologia, 267: 203-209.

DhankerR.HwangJ.-S., 2013. Predation by Apocyclops royi (Cyclopoid, Copepod) on ciliates and rotifers. Journal of Marine Science and Technology-Taiwan, 21: 246-251.

DussartB. H.DefayeD., 1985. Répertoire mondial des Copépodes Cyclopoides. (Centre National de la Recherche Scientifique, Paris).

FarhadianO.YusoffF. M.ArshadA., 2008. Population growth and production of Apocyclops dengizicus (Copepoda: Cyclopoida) fed on different diets. Journal of the World Aquaculture Society, 39: 384-396.

FarhadianO.YusoffM. F.ArshadA., 2014. Effects of salinity, temperature, light intensity and light regimes on production, growth and reproductive parameters of Apocyclops dengizicus. Iranian Journal of Fisheries Sciences, 13: 30-46.

GonzalezH.SmetacekV., 1994. The possible role of the cyclopoid copepod Oithona in retarding vertical flux of zooplankton fecal material. Marine Ecology Progress Series, 113: 233-246.

GuentherM.AraújoM.Flores-MontesM.Gonzalez-RodriguezE.Neumann-LeitaoS., 2014. Eutrofication effects on phytoplankton size-fractioned biomass and production at a tropical estuary. Marine Pollution Bulletin, in press. DOI:10.1016/j.marpolbul.2014.09.048.

GuillardR. R. L.RytherJ. H., 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Canadian Journal of Microbiology, 8: 229-239.

HerbstH. V., 1955. Cyclopoida Gnathostoma (Crustacea: Copepoda) von der brasilianischen Atlantikküste. Kieler Meeresforschung, 11: 214-229.

HerbstH. V., 1960. Copepoden (Crustacea, Entomostraca) aus Nicaragua und Südperu. Gewässer und Abwässer, 27: 27-54.

HoppU.MaierG.BleherR., 1997. Reproduction and adult longevity of five species of planktonic cyclopoid copepods reared on different diets: a comparative study. Freshwater Biology, 38: 289-300.

HsuC. H., 2000. Effects of food types and temperature on the development and reproduction of Apocyclops royi (Copepoda, Cyclopoida). (National Sun Yat-Sen University, Taipei).

JensenL. K.CarrollJ.PedersenG.HyllandK.DahleS.BakkeT., 2006. A multi-generation Calanus finmarchicus culturing system for use in long-term oil exposure experiments. Journal of Experimental Marine Biology and Ecology, 333: 71-78.

KennishM., 1990. Ecology of estuaries: biological aspects. (CRC Press, Boca Raton, FL).

LandryM.Lehner-FournierJ.FagernessV., 1985. Predatory feeding behavior of the marine cyclopoid copepod Corycaeus anglicus. Marine Biology, 85: 163-169.

Lansac-TôhaF. A.LimaA. F., 1993. Ecologia do zooplâncton do estuário do rio Una do Prelado (São Paulo, Brasil). Acta Limnologica Brasiliensia, 6: 82-96.

LeeK. W.DahmsH. U.ParkH. G.KangJ. H., 2013. Population growth and productivity of the cyclopoid copepods Paracyclopina nana, Apocyclops royi and the harpacticoid copepod Tigriopus japonicus in mono and polyculture conditions: a laboratory study. Aquaculture Research, 44: 836-840.

LopesM. J. S., 1988. Levantamento prévio do zooplâncton da lagoa da Jansen, São Luís, Maranhão (Brasil). Bol. Lab. Hidrob. S. Luís, 8: 61-80.

Lora-VilchisM. C.Maeda-MartínezA. N., 1997. Ingestion and digestion index of catarina scallop Argopecten ventricosus-circularis, Sowerby II, 1842, veliger larvae with ten microalgae species. Aquatic Research, 28: 905-910.

MallinM. A.PaerlH. W., 1994. Planktonic trophic transfer in an estuary — seasonal, diel, and community structure effects. Ecology, 75: 2168-2184.

Martinez-FernandezE.Acosta-SalmonH.Rangel-DavalosC., 2004. Ingestion and digestion of 10 species of microalgae by winged pearl oyster Pteria sterna (Gould, 1851) larvae. Aquaculture, 230: 417-423.

MetzC., 1998. Feeding of Oncaea curvata (Poecilostomatoida, Copepoda). Marine Ecology Progress Series, 169: 229-235.

MohamedH. H.SalmanS. D.AbdullahA. A. M., 2008. Some aspects of the biology of two copepods: Apocyclops dengizicus and Mesocyclops isabellae from a Pool in Garmat-Ali, Basrah, Iraq. Turkish Journal of Fisheries and Aquatic Sciences, 8: 239-247.

MuthupriyaP.AltaffK., 2009. Effect of salinity and temperature on the reproduction of the estuarine copepod Apocyclops royi (Lindbergh 1940). Journal of Experimental Zoology India, 12: 103-106.

NoriegaC. E. D., 2010. Estado trófico e balanço biogeoquímico dos nutrientes não conservativos (N e P) na região Metropolitana do Recife — Brasil. (Universidade Federal de Pernambuco, Recife).

PaganoM.Saint-JeanL.ArfiR.BouvyM.GuiralD., 1998. Zooplankton food limitation and grazing impact in a eutrophic brackish-water tropical pond (Cote d’Ivoire, West Africa). Hydrobiologia, 390: 83-98.

ParrishC. C.FrenchV. M.WhiticarM. J., 2012. Lipid class and fatty acid composition of copepods (Calanus finmarchicus, C. glacialis, Pseudocalanus sp., Tisbe furcata and Nitokra lacustris) fed various combinations of autotrophic and heterotrophic protists. Journal of Plankton Research, 34: 356-375.

ParrishC. C.WellsJ. S.YangZ.DabinettP., 1998. Growth and lipid composition of scallop juveniles, Placopecten magellanicus, fed the flagellate Isochrysis galbana with varying lipid composition and the diatom Chaetoceros muelleri. Marine Biology, 133: 461-471.

PernetaF.TremblayJ.DemerscE.RoussydM., 2003. Variation of lipid class and fatty acid composition of Chaetoceros muelleri and Isochrysis sp. grown in a semicontinuous system. Aquaculture, 221: 393-406.

PetitJ. R.JouzelJ.RaynaudD.BarkovN. I.BarnolaJ. M.BasileI.BenderM.ChappellazJ.DavisM.DelaygueG.DelmotteM.KotlyakovV. M.LegrandM.LipenkovV. Y.LoriusC.PepinL.RitzC.SaltzmanE.StievenardM., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399: 429-436.

Rivero-RodriguezS.BeaumontA. R.Lora-VilchisM. C., 2007. The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture, 263: 199-210.

RomanM. R., 1984. Utilization of detritus by the copepod Acartia tonsa. Limnology and Oceanography, 29: 949-959.

RoseR. A.BakerS. B., 1994. Larval and spat culture of the Western Australian silver- or goldlip pearl oyster, Pinctada maxima Jameson (Mollusca: Pteriidae). Aquaculture, 126: 35-50.

SichlauM. H.KiorboeT., 2011. Age- and size-dependent mating performance and fertility in a pelagic copepod, Temora longicornis. Marine Ecology Progress Series, 442: 123-132.

TiffanyM. A.SwanB. K.WattsJ. M.HurlbertS. H., 2002. Metazooplankton dynamics in the Salton Sea, California, 1997-1999. Hydrobiologia, 473: 103-120.

TóthL. G.ZánkaiN. P., 1985. Feeding of Cyclops vicinus (Uljanin) (Copepoda: Cyclopoida) in Lake Balaton on the basis of gut content analyses. Hydrobiologia, 122: 251-260.

TurnerJ. T., 1984. Zooplankton feeding ecology — contents of fecal pellets of the copepods Acartia tonsa and Labidocera aestiva from continental shelf waters near the mouth of the Mississippi River. Marine Ecology — Pubblicazioni Della Stazione Zoologica Di Napoli I, 5: 265-282.

TurnerJ. T., 2004. The importance of small planktonic copepods and their roles in pelagic marine food webs. Zoological Studies, 43: 255-266.

UchimaM.MuranoM., 1988. Mating behavior of the marine copepod Oithona davisae. Marine Biology, 99: 39-45.

VisoA. C.MartyJ. C., 1993. Fatty acids from 28 marine microalgae. Phytochemistry, 34: 1521-1533.

WuC. H.DahmsH. U.ChengS. H.HwangJ. S., 2011. Effects of food and light on naupliar swimming behavior of Apocyclops royi and Pseudodiaptomus annandalei (Crustacea, Copepoda). Hydrobiologia, 666: 167-178.

Figures

  • Map of the study area where the Apocyclops procerus (Herbst, 1955) specimens were collected. The asterisk marks the sampling point.

    View in gallery
  • Duration of Apocyclops procerus (Herbst, 1955) egg production cycles (white bars) and inter-production cycles (black bars) for each female observed (without further fecundation) at both salinities (26 and 36).

    View in gallery
  • Densities (ind./ml) of the microalgae species used in the grazing experiments during the sampled intervals (0, 30, 60 and 120 min) at both salinities (26 and 36) in the absence (control) and presence (treatment) of grazers (Apocyclops procerus (Herbst, 1955)): a-b, Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle, 1977 at both salinities; c-d, Chaetoceros muelleri Lemmermann, 1898 at both salinities; e, Isochrysis galbana Parke, 1949 at S=26. Asterisks indicate significant differences between control and treatment at each sampling period: p<0.05, ∗∗p<0.01 and ∗∗∗p<0.001.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 5 5 4
Full Text Views 4 4 4
PDF Downloads 1 1 1
EPUB Downloads 0 0 0