Acute toxicity and accumulation of microcystin-leucine-arginine in the crayfish Procambarus clarkii (Girard, 1852)

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The aim of this study was to determine the acute toxicity effect and the accumulation of microcystin-leucine-arginine (MC-LR) on the crayfish Procambarus clarkii (Girard, 1852). Juvenile P. clarkii (5.47 ± 1.3 g) were cultured under 5 different MC-LR concentrations (0.3, 0.6, 1.2, 2.4, 4.8 mg/l), then the acute toxicity effect was observed. The median lethal concentration (LC50) of MC-LR on juvenile P. clarkii was 3.741 mg/l at 24 h, 1.494 mg/l at 48 h, 0.817 mg/l at 72 h and 0.567 mg/l at 96 h. Accumulation of MC-LR was measured in different organs of mature P. clarkii (58.7 ± 3.8 g) exposed to 0.3 mg/l MC-LR for 120 h. The detected MC-LR concentration decreased in the sequence: hepatopancreas > ovary > abdominal muscle > intestine. Hepatopancreas and ovary were found to be the main targets of the toxin. The results suggested that the MC-LR produced by cyanobacteria blooms could not only reduce the survival rate of juvenile P. clarkii but also affect the fecundity of mature crayfish. This research also provides a reference basis for the detection and assessment of the pollution of water bodies in P. clarkii culture.

Crustaceana

International Journal of Crustacean Research

Sections

References

CazenaveJ.BistoniM. A.PesceS. F.WunderlinD. A., 2006. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquat. Toxicol., 76: 1-12.

ChenY.WangJ. Q.WangY., 2002. Toxicity and population growth effects of microcystin on the rotifer Brachionus plicatilis. China Environm. Sci., 22: 198-201.

CoddG. A., 2000. Cyanobacterial toxins, the perception of water quality, and the prioritization of eutrophication control. Ecol. Eng., 16: 51-60.

Ferrao-FilhoA. S.Kozlowsky-SuzukiB., 2011. Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar. Drugs, 9: 2729-2772.

GherardiF.HoldichD. M., 2000. Crayfish in Europe as alien species. How to make the best of a bad situation? Crustacean Issues, 11. (A. A. Balkema, Rotterdam).

GherardiF.LazzaraL., 2006. Effects of the density of an invasive crayfish (P. clarkii) on a pelagic and surface microalgae in a Mediterranean wetland. Arch. Hydrobiol., 165: 401-414.

HanssonL. A.GustafssonS.RengeforsK.BomarkL., 2007. Cyanobacterial chemical warfare affects zooplankton community composition. Freshwater Biol., 52: 1290-1301.

HoegerS. J.HitzfeldB. C.DietrichD. R., 2005. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol. Appl. Pharmacol., 203: 231-242.

HuZ. H.LiY. C.HaoJ. S., 2011. Study on the acute toxicity of microsystin-LR on Hydra magnipapillata. Agric. Sci. Technol., 12: 1525-1527.

HuangC. H.ChangR. J.HuangS. L.ChenW. L., 2003. Dietary vitamin E supplementation affects tissue lipid peroxidation of hybrid tilapia. Oreochromis niloticus × O. aureus. Comp. Biochem. and Physiol., Part B, 134: 265-270.

JosA.PichardoS.PrietoA. I.RepettoG.VazquezC. M.MorenoI. M.CameanA. M., 2005. Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions. Aquat. Toxicol., 72: 261-271.

LiX. G.ZhouG.ZhouJ. L., 2010. Preliminary study on the accumulation and biodepuration of microcystins in tilapia. J. Hydroecol., 3: 67-70.

LiX. Y.LiuY. D.SongL. R., 2003. The toxicity of microcystins to embryo and larvae of loach: Paramisgurnus dabryanus Sauvage. Acta Hydrobiol. Sin., 27: 318-319.

LindsayJ.MetcalfJ. S.CoddG. A., 2006. Protection against the toxicity of microcystin-LR and cylindrospermopsin in Artemia salina and Daphnia spp. by pretreatment with cyanobacterial lipopolysacchari (LPS). Toxicon, 48: 995-1001.

MarceloG. G.IlieS. R.HunbertoV., 2003. Variation in lipid, protein, and carbohydrate content during the embryonic development of the crayfish Cherax quadricarinatus (Decapoda: Parastacidae). J. Crustacean Biol., 23: 1-6.

SmithJ. L.HaneyJ. F., 2006. Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus). Toxicon, 48: 580-589.

SoaresR. M.MagalhaesV. F.AzevedoS., 2004. Accumulation and depuration of microcystins (Cyanobacteria hepatotoxins) in Tilapia rendalli (Cichlidae) under laboratory conditions. Aquatic Toxicol., 70: 1-10.

TricaricoE.BertocchiS.BrusconiS.CasaloneE.GherardiF.GiorgiG.MastromeiG.ParisiG., 2008. Depuration of microcystin-LR from the red swamp crayfish P. clarkii with assessment of its food quality. Aquaculture, 285: 90-95.

VasconcelosV.OliveiraS.TelesF. O., 2001. Impact of a toxic and non-toxic strain of Microcystis aeruginosa on the crayfish P. clarkii. Toxicon, 39: 1461-1470.

XuH. B.SuiH. X.GaoS. R., 2003. Primary experimental study on bioaccumulation of microcystin Cyprinus carpio. Chin. J. Food Hygiene, 15: 202-204.

ZhouY. X.ZhangZ. S., 1989. Aquatic toxicity methods. In: ZhouX. Y.ZhangZ. S. (eds.), Methods for aquatic bioassays: 114-206. (Agricultural Press, Beijing).

Figures

  • Biological enrichment of MC-LR in liver, muscle, intestine and gonad of Procambarus clarkii (Girard, 1852). Data with different letters significantly differ from each other (P<0.05).

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 5 5 4
Full Text Views 1 1 1
PDF Downloads 1 1 1
EPUB Downloads 0 0 0