Growth and moulting of wild-born immature snow crabs, Chionoecetes opilio (Fabricius, 1788) (Decapoda, Majoidea), in the laboratory

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Growth and moulting of wild-born immature snow crabs (Chionoecetes opilio (Fabricius, 1788)) were investigated by laboratory culture experiments. Crabs with 16.2-42.9 mm carapace width caught from the Sea of Japan were cultured at a temperature of their natural habitat (approximately 1°C). The growth indices (size increments at moulting in mm and in % of premoult carapace width) and intermoult period were significantly affected by premoult carapace width, but sex did not affect these variables. Furthermore, we demonstrated that premoult carapace width and days after moulting significantly affected moulting probability and we developed a moulting probability model based on these variables. From this model, the number of days of intermoult periods when moults occurred in 50% of crabs of instars VI, VII and VIII was estimated at 234, 284 and 346 days, respectively.

Growth and moulting of wild-born immature snow crabs, Chionoecetes opilio (Fabricius, 1788) (Decapoda, Majoidea), in the laboratory

in Crustaceana

Sections

References

Alunno-BrusciaM.Sainte-MarieB.1998. Abdomen allometry, ovary development, and growth of female snow crab, Chionoecetes opilio (Brachyura, Majidae), in the northwestern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci.55: 459-477.

BatesD.MächlerM.BolkerB. M.WalkerS. C.2014. Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.

BurmeisterA.Sainte-MarieB.2010. Pattern and causes of a temperature-dependent gradient of size at terminal moult in snow crab (Chionoecetes opilio) along West Greenland. Polar Biol.33: 775-788.

ChangY. J.SunC. L.ChenY.YehS. Z.2012. Modelling the growth of crustacean species. Rev. Fish Biol. Fish.22: 157-187.

ComeauM.ConanG. Y.MaynouF.RobichaudG.TherriaultJ. C.StarrM.1998. Growth, spatial distribution, and abundance of benthic stages of the snow crab (Chionoecetes opilio) in Bonne Bay, Newfoundland, Canada. Can. J. Fish. Aquat. Sci.55: 262-279.

ConanG. Y.ComeauM.1986. Functional maturity and terminal molt of male snow crab, Chionoecetes opilio. Can. J. Fish. Aquat. Sci.43: 1710-1719.

DaweE. G.ColbourneE. B.2002. Distribution and demography of snow crab (Chionoecetes opilio) males on the Newfoundland and Labrador Shelf. In: PaulA. J.DaweE. G.EinerR.JamiesonG. S.KruseG. H.OttoR. S.Sainte-MarieB.ShirleyT. C.WoodbyD. (eds.) Crabs in cold water regions: biology management and economics: 577-594. (University of Alaska Sea Grant College ProgramFairbanks, AK).

DaweE. G.MullowneyD. R.MoriyasuM.WadeE.2012. Effects of temperature on size-at-terminal molt and molting frequency in snow crab Chionoecetes opilio from two Canadian Atlantic ecosystems. Mar. Ecol. Prog. Ser.469: 279-296.

DuránJ.PalmerM.PastorE.2013. Growing reared spider crabs (Maja squinado) to sexual maturity: the first empirical data and a predictive growth model. Aquaculture408-409: 78-87.

ErnstB.ArmstrongD. A.BurgosJ.OrensanzJ. M.2012. Life history schedule and periodic recruitment of female snow crab (Chionoecetes opilio) in the eastern Bering Sea. Can. J. Fish. Aquat. Sci.69: 532-550.

EverittB. S.HothornT.2009. A handbook of statistical analyses using R (2nd ed.): 1-355. (CRC PressBoca Raton, FL).

HartnollR. G.1982. Growth. In: AbeleL. G. (ed.) The biology of Crustacea 2. Embryology morphology and genetics: 111-196. (Academic PressNew York, NY).

HebertM.BenhalimaK.MironG.MoriyasuM.2002. Moulting and growth of male snow crab, Chionoecetes opilio (O. Fabricius, 1788) (Decapoda, Majidae), in the southern Gulf of St. Lawrence. Crustaceana75: 671-702.

HoggarthD. D.AbeyasekeraS.ArthurR.BeddingtonJ. R.BurnR. W.HallsA. S.KirkwoodG. P.McAllisterM.MedleyP.MeesC. C.PillingG. M.WakefordR.WelcommeR. L.2006. Stock assessment and fishery management: a framework guide to the FMSP stock assessment tools. FAO Fisheries Technical Paper 487: 1-261. (FAO Rome Italy).

ItoK.1957. On the relative growth of abdomen and five paired thoracic appendages of zuwaigani, Chionoecetes opilio. Annual Report of Japan Sea Regional Fisheries Research Laboratory3: 117-129. [In Japanese with English summary.]

ItoK.1970. Ecological studies on the edible crab, Chionoecetes opilio O. Fabricius in the Japan Sea III: age and growth as estimated on the basis of the seasonal changes in the carapace width frequencies and the carapace hardness. Bulletin of Japan Sea Regional Fisheries Research Laboratory22: 81-116. [In Japanese with English summary.]

ItoK.1984. Ecological studies on the edible crab, Chionoecetes opilio O. Fabricius in the Japan Sea IV: distribution and ecology of the larvae at the early bottom life stage in the coastal waters of Niigata prefecture. Bulletin of Japan Sea Regional Fisheries Research Laboratory34: 19-41. [In Japanese with English summary.]

JadamecL. S.DonaldsonW. E.CullenbergP.1999. Biological field techniques for Chionoecetes crabs: 1-80. (University of Alaska Sea Grant College ProgramFairbanks, AK).

KiladaR.Sainte-MarieB.RochetteR.DavisN.VanierC.CampanaS.2012. Direct determination of age in shrimps, crabs, and lobsters. Can. J. Fish. Aquat. Sci.69: 1728-1733.

KobayashiK.1989. Temperature influence on growth of the zuwai crab Chionoecetes opilio. Aquacult. Sci.37: 35-41. [In Japanese.]

KonT.1980. Studies on the life history of the zuwai crab Chionoecetes opilio (O. Fabricius). Special Publication from the Sado Marine Biological Station Niigata University 2: 1-64. [In Japanese with English summary.]

KurataH.1962. Studies on the age and growth of Crustacea. Bulletin of Hokkaido Regional Fisheries Research Laboratory24: 1-115.

LovrichG. A.Sainte-MarieB.SmithB. D.1995. Depth distribution and seasonal movements of Chionoecetes opilio (Brachyura: Majidae) in Baie Sainte-Marguerite, Gulf of Saint Lawrence. Can. J. Zool.73: 1712-1726.

McCullagP.NelderJ. A.1989. Generalized linear models: 1-509. (Chapman and HallLondon).

MoriyasuM.ConanG. Y.MalletP.ChiassonY. J.1987. Growth at molt molting season and mating of snow crab (Chionoecetes opilio) in relation to functional and morphometric maturity. ICES CM 1987/K:21: 1-15.

OrensanzJ. M. L.ErnstB.ArmstrongD. A.2007. Variation of female size and stage at maturity in snow crab (Chionoecetes opilio) (Brachyura: Majidae) from the eastern Bering Sea. J. Crust. Biol.27: 576-591.

Sainte-MarieB.RaymondS.BrêthesJ.1995. Growth and maturation of the benthic stages of male snow crab, Chionoecetes opilio (Brachyura: Majidae). Can. J. Fish. Aquat. Sci.52: 903-924.

Sainte-MarieB.LafranceM.2002. Growth and survival of recently settled snow crab Chionoecetes opilio in relation to intra- and intercohort competition and cannibalism: a laboratory study. Mar. Ecol. Prog. Ser.244: 191-203.

StevensB. G.2012. Growth of juvenile red king crabs, Paralithodes camtschaticus, through sequential molts in the laboratory. J. Crust. Biol.32: 215-222.

YamamotoT.YamadaT.FujimotoH.HamasakiK.2014. Effects of temperature on snow crab (Chionoecetes opilio) larval survival and development under laboratory conditions. J. Shellfish Res.33: 19-24.

YamamotoT.YamadaT.KinoshitaT.UedaY.FujimotoH.YamasakiA.HamasakiK.2015. Effects of temperature on growth of juvenile snow crabs, Chionoecetes opilio, in the laboratory. J. Crust. Biol.35: 140-148.

YamasakiA.KuwaharaA.1991. The terminal molt of male snow crab in the Japan Sea. Nippon Suisan Gakkaishi57: 1839-1844. [In Japanese with English summary.]

YoshoI.HayashiI.1994. The bathymetric distribution of Chionoecetes opilio and C. japonicus (Majidae; Brachyura) in the western and northern areas of the Sea of Japan. Bulletin of the Japan Sea National Fisheries Research Institute44: 59-71.

Figures

  • View in gallery

    Relationships between premoult and postmoult carapace widths (A), growth increment (B), growth rate (C) and intermoult period (D) of immature Chionoecetes opilio (Fabricius, 1788). The straight lines were drawn from regression analyses.

  • View in gallery

    Changes in the growth rate with premoult carapace width in male (A) and female (B) of the snow crab Chionoecetes opilio (Fabricius, 1788) in the current and previous studies. Culturing crabs were captured from the Sea of Japan (this study; Kon, 1980), Baie des Chaleurs in the Gulf of Saint Lawrence (Moriyasu et al., 1987; Hebert et al., 2002), and Baie Sainte-Marguerite in the Gulf of Saint Lawrence (Sainte-Marie et al., 1995; Alunno-Bruscia & Sainte-Marie, 1998). The culturing temperatures are shown in the legend. Sainte-Marie et al. (1995) showed a breakpoint in the regression. Hebert et al. (2002) showed the regressions for immature and adolescent crabs.

  • View in gallery

    Moulting probability for progressively larger Chionoecetes opilio (Fabricius, 1788), in instar VI (carapace width 19.5 mm), instar VII (carapace width 27.5 mm), and instar VIII (carapace width 37.5 mm), drawn from the generalized (binomial) linear mixed-effect model (see table III). Carapace widths of each instar are from wild snow crabs reported by Ito (1970). The vertical dotted lines indicate the days for half moulting probability.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 6 6 3
Full Text Views 8 8 8
PDF Downloads 1 1 1
EPUB Downloads 0 0 0