Accumulation of metals in zooplankton from karst plateau reservoirs with different eutrophic status in Guizhou Province, P. R. China

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Metal concentrations in large zooplankton from three karst reservoirs with different eutrophic status (Hongfeng Lake reservoir, Baihua Lake reservoir, and Aha reservoir) in Guizhou Province, China, were investigated. Samples of zooplankton were collected in 2014 and 2015. It was found that accumulation of metals in zooplankton was significantly correlated with Chl-a (chlorophyll a), which can be attributed to the characteristic distribution of species of phytoplankton. A low concentration of metals in water means a higher bioaccumulation factor (BAF) and a stronger transfer to zooplankton via the trophic chain, and hence a higher ecological risk. Zooplankton in the eutrophic Aha reservoir had lower concentrations of Fe (mean 1264.25 mg/kg) than in Hongfeng (mean 2566.07 mg/kg) and Baihua (2246.87 mg/kg) in 2014-2015, because of high TP (Total Phosphorus) concentration, which has an affinity with suspended particles matter. A high level of Cd (mean 0.62 mg/kg) was found in Hongfeng. This study shows that zooplankton in the eutrophic Aha reservoir had higher concentrations of metals (Mn, mean 590.47 mg/kg; Pb, mean 7.6 mg/kg; Cr, mean 26.31 mg/kg; Ni, mean 8.54 mg/kg; Zn, mean 225.73 mg/kg; and Cu, mean 238.33 mg/kg) than in the mesotrophic Hongfeng and Baihua reservoirs. Thus, the eutrophic status was significantly, positively correlated with high concentrations of metals in the zooplankton, as also observed in other reservoir studies.

Crustaceana

International Journal of Crustacean Research

Sections

References

AlvenslebenN. V.StookeyK.MagnussonM.HeimannK., 2013. Salinity tolerance of Picochlorum atomus and the use of salinity for contamination control by the freshwater cyanobacterium Pseudanabaena limnetica. PLoS One, 8: e63569.

ChenC.KammanN.WilliamsJ.BuggeD.TaylorV.JacksonB.MillerE., 2012. Spatial and temporal variation in mercury bioaccumulation by zooplankton in Lake Champlain (North America). Environm. Poll., 161: 343-349.

ChenC.-Y.FoltC. L., 2005. High plankton densities reduce mercury biomagnification. Environm. Sci. Technol., 39: 115-121.

ChenC.-Y.StembergR. S.KlaueB.BlumJ. D.PickhardtP. C.FoltC. L., 2000. Accumulation of heavy metals in food web components across a gradient of lakes. Limnol. Oceanogr., 45: 1525-1536.

Environment Canada, 2004. Canadian guidance framework for the management of phosphorus in freshwater systems. National Guidelines and Standards Office, Water Policy and Coordination Directorate, Environment Canada, Report, 1-8: 64-65.

FangZ.-Q.LiC.-X., 2009. Sediment deposition and its nutrient volume in Baihua Lake and Aha Lake. Journal of Guizhou Normal University, 27(4): 30-33.

FengX.SommarJ.LindqvistO.HongY., 2002. Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China. Water Air Soil Poll., 139: 311-324.

HuH. J.LiY.WeiH.ZhuJ., 1980. Freshwater algae in China. (Shanghai Science and Technology Press, Shanghai).

JiangY. Z.ChuN.-S., 1979. Crustacea. Freshwater cladocerans. In: Fauna Sinica: 1-294. (Science Press, Beijing). [In Chinese.]

KorovchinskyN. M., 2000. Redescription of Diaphanosoma dubium Manuilova, 1964 (Brachiopoda: Ctenopoda: Sididae), and description of a new, related species. Hydrobiologia, 441: 72-92.

LindstromM., 2001. Distribution of particulate and reactive mercury in surface waters of Swedish forest lakes — an empirically based predictive model. Ecol. Model., 136: 81-93.

LinqvistO.JohnssonK.AastrupM., 1991. Mercury in the Swedish environment — recent research on causes, consequences and corrective methods. Water Air Soil Poll., 55: 1-126.

LiuB.YanH.-Y.WangC.-P.LiQ.-H.GuédronS.SpangenbergJ. E.FengX.DominikJ., 2012. Insights into low fish mercury bioaccumulation in a mercury-contaminated reservoir, Guizhou, China. Environm. Poll., 160: 109-117.

LongS.-X.ChenC.GuoY.YanN.ZhenZ.-X., 2013. Phytoplankton’s characteristics of community structure and eutrophication in Lake Hongfeng of Guizhou. Environm. Monit. China, 29: 23-29.

LuY. C.LiuQ.-C.WangS.-L.XuG.LiuF., 2007. Seasonal variability of p(CO2) in the two karst reservoirs, Hongfeng and Baihua lakes in Guizhou Province, China. Environm. Sci., 28(12): 2674-2681.

LucotteM.SchetagneR.TherienN.LangloisC.TremblayA., 1999. Mercury in the biogeochemical cycle — natural environments and hydroelectric reservoirs of northern Quebec (Canada). (Springer, Berlin).

LuengenA. C.PeterR. T.FlegalA. R., 2007. Contrasting biogeochemistry of six trace metals during the rise and decay of a spring phytoplankton bloom in San Francisco Bay. Limnol. Oceanogr., 52: 1112-1130.

MartinJ. H., 1970. The possible transport of trace metals via moulted copepod exoskeletons. Limnol. Oceanogr., 4: 472-478.

MatthewsR.HillesM.PelletierG., 2002. Determining trophic state in Lake Whatcom, Washington (USA), a softwater lake exhibiting seasonal nitrogen limitation. Hydrobiologia, 468: 107-121.

MortonS. D.LeeT. H., 1974. Algae blooms: possible effects of iron. Environm. Sci. Technol., 8(7): 673-674.

PempkowiakJ.MiotkJ. W.BeldowskiJ.WalkuszW., 2006. Heavy metals in zooplankton from the southern Baltic. Chemosphere, 62: 1697-1708.

RadwayJ. A. C.WildeE. W.WhitakerM. J.WeissmanJ. C., 2001. Screening of algal strains for metal removal capabilities. J. Appl. Phycol., 13: 451-455.

RazaviN. R.QuM.-Z.ChenD.-M.ZhongY.RenW.-W.WangY.-X.CampbellL. M., 2015. Effect of eutrophication on mercury (Hg) dynamics in subtropical reservoirs from a high Hg deposition ecoregion. Limnol. Oceanogr., 60: 1-16.

RejomonG.BalachandranK. K.NairM.JosephT., 2008. Trace metal concentrations in marine zooplankton from the western Bay of Bengal. Appl. Ecol. Environm. Res., 6: 107-116.

RejomonG.KumarP. K. D.NairM.MuraleedharanK. R., 2010. Trace metal dynamics in zooplankton from the Bay of Bengal during summer monsoon. Environm. Toxicol., 25: 622-633.

RitterhoffJ.ZaukeG. P., 1999. Trace metals in field samples of zooplankton from the Fram Strait and the Greenland Sea. Sci. Total Environm., 199: 255-270.

ShenC. J.SongD. X., 1979. Freshwater Copepoda: Calanoida. In: Fauna Sinica, Crustacea: 1-450. (Science Press, Beijing). [In Chinese.]

TwiningB.FisherN. S., 2004. Trophic transfer of tremetals from Protozoa to mesozooplankton. Limnol. Oceanogr., 49: 28-39.

WangJ. J., 1961. Freshwater Rotifera. In: Fauna Sinica: 1-283. (Science Press, Beijing). [In Chinese.]

WangQ.FengX.-B.YanY.-F.YanH.-Y., 2011. Spatial and temporal variations of total and methylmercury concentrations in plankton from a mercury-contaminated and eutrophic reservoir in Guizhou Province, China. Environm. Toxicol. Chem., 30: 2739-2747.

WangW.-X.FisherN. S., 1998. Accumulation of trace elements in a marine copepod. Limnol. Oceanogr., 43: 273-283.

XiaP. H.LiuY.XueF.LongS.-X.YanW.-C.LinT., 2012. Dynamics and structure of phytoplankton community in the Baihua reservoir Guizhou. Earth Environm., 40: 179-187.

YanH. Y.FengX.-B.ShangL.-H.QiuG.-L.DaiQ.-J.WangS.-F.HouY.-M., 2008. The variations of mercury in sediment profiles from a historically mercury contaminated reservoir, Guizhou Province, China. Sci. Total Environm., 407: 497-506.

YanN.GirardR.HeneberryJ.KellerW.GunnJ.DillonP., 2004. Recovery of copepod but not cladoceran zooplankton from severe and chronic effects of multiple stressors. Ecol. Lett., 7: 452-460.

YuR.-Q.WangW.-X., 2002. Trace metal assimilation and release budget in Daphnia magna. Limnol. Oceanogr., 47: 495-504.

YuX.DriscollC. T.MontesdeocaM.EversD.DuronM.WilliamsK.SchochN.KammanN. C., 2011. Spatial patterns of mercury in biota of Adirondack, New York lakes. Ecotoxicology, 20: 1543-1554.

ZhangW., 1999. Environmental characters and eutrophication in Hongfeng Reservoir and Baihua Reservoir. (Guizhou Technological Publishing, Guiyang).

Figures

  • Location of the sample sites in the Hongfeng Lake reservoir, the Baihua Lake reservoir, and the Aha reservoir in Guizhou Province, P. R. China. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • a-h, Concentrations of Fe, Mn, Pb, Cr, Cd, Ni, Zn, and Cu in zooplankton from the Hongfeng Lake reservoir (sites H1-H6), Baihua Lake reservoir (B7-B10), and Aha reservoir (A11-A12) in Guizhou Province, P. R. China, 2014-2015 (mean ± SE, n=3).

    View in gallery
  • a-c, Correlations of metal concentrations (Mn, Pb, Cr, Ni, Zn) in zooplankton with the eutrophication factors Chl-a, TP, and TN); d, correlation between TP and Chl-a.

    View in gallery
  • a, Bioaccumulation (BAF) of metals (Fe, Mn, Cu) and correlation with Chl-a; b, bioaccumulation of metals in zooplankton (Zn, Ni, Cd, Pb).

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 16 16 4
Full Text Views 6 6 5
PDF Downloads 0 0 0
EPUB Downloads 0 0 0