Growth patterns and population dynamics of the kelp crab Pugettia vulgaris (Decapoda, Brachyura, Epialtidae) on the coast of Sagami Bay, Japan

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

Investigating the possibility of diverse patterns in habitat use of spider crabs requires to distinguish the growth phase of each sampled individual. In this study, ontogenetic stages (OS) were set on the basis of the different combinations of several secondary sexual characteristics, and used to describe the population dynamics of a small species kelp crab, Pugettia vulgaris Ohtsuchi, Kawamura & Takeda, 2014. Morphometric analysis, together with an estimation of the size at 50% maturity, confirmed that each OS is a statistically independent group in both sexes, and that this species reaches Stage III (fully grown stage at terminal anecdysis) at around 4-5 mm CW in both sexes. Monthly quantitative sampling during two years, which was carried out in 11 different subtidal habitats (<0.1-8 m deep), revealed that P. vulgaris preferred lower subtidal (2-8 m deep) red algal turfs with physically complex structures as their habitat, and will stay there throughout their entire post-settlement life history. The densities of P. vulgaris rapidly increased during summer to late autumn due to the successive recruitments of juveniles, and the highest mean density (315 ± 72 ind./m2) was recorded at lower subtidal gelidiacean turfs (Rhodophyta, Gelidiaceae) in September 2009. Females were ovigerous at >4.28 mm CW, during spring to autumn. Stage III individuals died out by autumn. Thus, the longevity of P. vulgaris is estimated to be approximately one year. Although the CW class frequency composition did not differ clearly, the OS frequency composition differed among populations in three algal turfs, suggesting settlement selectivity, and a different mortality among these different populations.

Crustaceana

International Journal of Crustacean Research

Sections

References

AhlJ. S. B.LauferH., 1996. Symposium 2: male reproductive physiology. The pubertal moult in Crustacea revisited. Invertebr. Reprod. Dev., 30: 177-180.

AkiokaH.BabaM.MasakiT.JohansenH. W., 1999. Rocky shore turfs dominated by Corallina (Corallinales, Rhodophyta) in northern Japan. Phycol. Res., 47: 199-206.

ArisJ. P.AllanA. D.MoultonL., 1982. The occurrence of Pugettia richii (Crustacea: Decapoda) on Cystoseira osmundacea follows a diel pattern. Bull. Mar. Sci., 32: 243-249.

BaezaJ. A.AndersenJ. R.SpadaroA. J.BehringerA. J., 2012. Sexual dimorphism, allometry, and size at first maturity of the Caribbean king crab, Mithrax spinosissimus, in the Florida Keys. J. Shellfish Res., 31: 909-916.

BeningerP. G.ElnerR. W.PoussartW., 1991. Gonopods of the majid crab Chionoecetes opilio (O. Fabricius). J. Crust. Biol., 11: 217-228.

ByrnesJ.StachowiczJ. J.HultgrenK. M.HughesA. R.OlyarnikS. V.ThornbertC. S., 2006. Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecol. Lett., 9: 61-71.

Carmona-SuarezC., 2003. Reproductive biology and relative growth in the spider crab Maja crispata (Crustacea: Brachyura: Majidae). Sci. Mar., 67: 75-80.

CoboV. J.AlvesD. F. R., 2009. Relative growth and sexual maturity of the spider crab, Mithrax tortugae Rathbun, 1920 (Brachyura, Mithracidae) on a continental island off the southeastern Brazilian coast. Crustaceana, 82: 1265-1273.

CoboV. J.BarrosS. D. P., 2009. Reproductive output of the spider crab Epialtus bituberculatus (H. Milne Edwards, 1834) (Crustacea, Decapoda, Brachyura) associated with the beds of the alga Sargassum cymosum (C. Agardh, 1820) on the southeastern Brazilian coast. Invertebr. Reprod. Dev., 53: 53-58.

ConanG. Y.ComeauM., 1986. Functional maturity and terminal moult of snow crab, Chionoecetes opilio. Can. J. Fish. Aquat. Sci., 49: 2460-2468.

CorgosA.FreireJ., 2006. Morphometric and gonad maturity in the spider crab Maja brachydactyla: a comparison of methods for estimating size at maturity in species with determinate growth. ICES J. Mar. Sci., 63: 851-859.

CorgosA.SanchezN.FreireJ., 2010. Dynamics of the small-scale spatial structure of a population of the spider crab Maja brachydactyla (Decapoda: Majidae). J. Shellfish Res., 29: 25-36.

DalyB.KonarB., 2008. Effects of macroalgal structural complexity on nearshore larval and post-larval crab composition. Mar. Biol., 153: 1055-1064.

DalyB.KonarB., 2010. Temporal trends of two spider crabs (Brachyura, Majoidea) in nearshore kelp habitats in Alaska, U.S.A. Crustaceana, 83: 659-669.

De GourseyR. E.AusterP. J., 1992. A mating aggregation of the spider crab (Libinia emarginata). J. Northwest Atl. Fish. Sci., 13: 77-82.

DieselR., 1986. Population dynamics of the commensal spider crab Inachus phalangium (Decapoda: Maiidae). Mar. Biol., 91: 481-489.

FloresA. A. V.MarquesF. P. L.Negreiros-FransozoM. L., 2002. Postlarval stages and growth patterns of the spider crab Pyromaia tuberculata (Brachyura, Majidae) from laboratory-reared material. J. Crust. Biol., 22: 314-327.

FuseyaR.WatanabeS., 1993. Growth and reproduction of the spider crab, Pugettia quadridens quadridens (De Haan) (Brachyura: Majidae). Crust. Res., 22: 75-81.

GarthJ. S., 1958. Brachyura of the Pacific coast of America: Oxyrhyncha. Allan Hancock Pac. Exped., 21: 1-854, pls. A-Z, Z1-Z4, 1-55, tbls. 1-107.

GriffinD. J. G.TranterH. A., 1986. The Decapoda Brachyura of the Siboga Expedition. Part VIII. Majidae. Siboga Expeditie, 39: 1-335, 22 pls.

GrossmanG. D., 1986. Food resource partitioning in a rocky intertidal fish assemblage. J. Zool., London, (B) 1: 317-355.

GueraoG.RotllantG., 2009. Post-larval development and sexual dimorphism of the spider crab Maja brachydactyla (Brachyura: Majidae). Sci. Mar., 73: 797-808.

HartnollR. G., 1963. The biology of Manx spider crabs. Proc. Zool. Soc. London, 141: 423-496.

HartnollR. G., 1964. The biology of spider crabs: a comparison of British and Jamaican species. Crustaceana, 9: 1-16.

HartnollR. G., 1974. Variation in growth pattern between some secondary sexual characters in crabs (Decapoda Brachyura). Crustaceana, 27: 131-136.

HayakawaJ.KawamuraT.KurogiH.WatanabeY., 2013. Shelter effects of coralline algal turfs: protection for Turbo cornutus juveniles from predation by a predatory gastropod and wrasse. Fish. Sci., 79: 15-20.

HayakawaJ.KawamuraT.OhashiS.OhtsuchiN.KurogiH.WatanabeY., 2012. Predation by neogastropods on Turbo cornutus juveniles and other small gastropods inhabiting coralline algal turfs. Fish. Sci., 78: 309-325.

HinesA. H., 1982. Coexistence in a kelp forest: size, population dynamics, and resource partitioning in a guild of spider crabs (Brachyura, Majidae). Ecol. Monogr., 52: 179-198.

HuhS. H.AnY. R., 1998. Seasonal variation of crab (Crustacea: Decapoda) community in the eelgrass (Zostera marina) bed in Kwangyang Bay, Korea. J. Korean Fish. Soc., 34: 535-544. [In Korean.]

HultgrenK. M.StachowiczJ. J., 2008. Alternative camouflage strategies mediate predation risk among closely related co-occurring kelp crabs. Oecologia, 155: 519-528.

HultgrenK. M.StachowiczJ. J., 2010. Size-related habitat shifts facilitated by positive preference induction in a marine kelp crab. Behav. Ecol., 21: 329-336.

James-PirriM.-J.CobbJ. S., 1997. Growth rates of planktonic and newly settled American lobsters Homarus americanus. Mar. Ecol. Prog. Ser., 160: 233-240.

KelaherB. P., 2002. Influence of physical characteristics of coralline turf on associated macrofaunal assemblages. Mar. Ecol. Prog. Ser., 232: 141-148.

KnudsenJ. W., 1964. Observations of the reproductive cycles and ecology of the common Brachyura and crablike Anomura of Puget Sound, Washington. Pac. Sci., 18: 3-33.

LiuzziM. G.GappaJ. L., 2008. Macrofaunal assemblages associated with coralline turf: species turnover and changes in structure at different spatial scales. Mar. Ecol. Prog. Res., 363: 147-156.

MadariagaD. J.OrtizM.ThielM., 2013. Demography and feeding behavior of the kelp crab Taliepus marginatus in subtidal habitats dominated by the kelps Macrocystis pyrifera or Lessonia trabeculata. Invertebr. Biol., 132: 133-144.

McLeanJ. H., 1962. Sublittoral ecology of kelp beds of the open coast near Carmel, California. Biol. Bull. Mar. Biol. Lab. Woods Hole, 122: 95-114.

MuraM.OrrùF.CauA., 2005. Size at sexual maturity of the spider crab Anamathia rissoana (Decapoda: Majoidea) from the Sardinian Sea. J. Crust. Biol., 25: 110-115.

NgP. K. L.GuinotD.DavieP. J. F., 2008. Systema Brachyurorum: part 1. An annotated checklist of extant brachyuran crabs of the world. Raffles B. Zool., 17(Suppl.): 1-286.

OhtsuchiN.KawamuraT.TakedaM., 2014. Redescription of a poorly known epialtid crab Pugettia pellucens Rathbun, 1932 (Crustacea: Decapoda: Brachyura: Majioidea) and description of a new species from Sagami Bay, Japan. Zootaxa, 3765: 557-570.

OnitsukaT.KawamuraT.OhashiS.IwanagaS.HoriiT.WatanabeY., 2008. Effects of sediments on larval settlement of abalone Haliotis diversicolor. J. Exp. Mar. Biol. Ecol., 365: 53-58.

PalmaA. T.OrregoC.ArriagadaM., 2003. Crypsis in early benthic phases of brachyuran decapod crustaceans in central Chile. Rev. Chil. Hist. Nat., 76: 149-156.

PalmaA. T.Soto-GamboaM.OjedaF. P., 2011. Ontogenetic habitat shift of an herbivorous crab: a chemically mediated defense mechanism? Rev. Biol. Mar. Oceanogr., 46: 329-338.

PérezC., 1928. Sur l’appareil d’accrochage de l’abdomen au thorax chez les Decapodes Brachyures. CR. Acad. Sci. Paris, 186: 461-463. [In French.]

PérezC., 1929. Caractères sexuels chez un crabe oxyrhynque (Macropodia rostrata L.). CR. Acad. Sci. Paris, 188: 91-93. [In French.]

R Development Core Team, 2012. R: a language and environment for statistical computing (2.15.0 edition). (R Foundation for Statistical Computing, Vienna).

Sal MoyanoM. P.GavioM. A.CuartasE. I., 2011 (cf. a). Copulatory system of the spider crab Libinia spinosa (Crustacea: Brachyura: Majoidea). J. Mar. Biol. Assoc. U.K., 91: 1617-1625.

Sal MoyanoM. P.GavioM. A.MaggiM. D., 2011 (cf. b). Morphometric and gonad maturity of the spider crab Libinia spinosa (Crustacea: Brachyura: Majoidea: Epialtidae) in Argentina. J. Mar. Biol. Assoc. U.K., 91: 837-844.

SampedroM. P.González-GurriaránE.FreireJ.MuiñoR., 1999. Morphometry and sexual maturity in the spider crab Maja squinado (Decapoda: Majidae) in Galicia, Spain. J. Crust. Biol., 19: 578-592.

SatoM.WadaK., 2000. Resource utilization for decorating in three intertidal majid crabs (Brachyura: Majidae). Mar. Biol., 137: 705-714.

StachowiczJ. J.HayM. E., 1999. Reducing predation through chemically mediated camouflage: indirect effects of plant defenses on herbivores. Ecology, 80: 495-509.

TakedaM.OkamotoK.FukudaT., 1976. Huenia brevifrons Ward (Decapoda, Majidae) attached to calcareous green alga, Halimeda, from the Ryukyu Islands. Bull. Natl. Sci. Mus., Tokyo, Ser. A (Zool.), 2: 103-107.

TamoneS. L.AdamsM. M.DuttonJ. M., 2005. Effect of eyestalk-ablation on circulating ecdysteroids in hemolymph of snow crabs, Chionoecetes opilio: physiological evidence for a terminal moult. Integr. Comp. Biol., 45: 166-171.

TeissierG., 1933. Étude de la croissance de quelques variants sexuels chez Macropodia rostrata L. Bull. Biol. Fr. Bel., 67: 401-444. [In French.]

TeixeiraG. M.FransozoV.CastilhoA. L.CostaR. C.FraireF. A. M., 2008. Size distribution and sex ratio in the spider crab Epialtus brasiliensis (Dana, 1852) associated with seaweed on a rocky shore in southeastern Brazil. Senkenb. Biol., 88: 169-175.

TeixeiraG. M.FransozoV.CoboV. J.HiyodoC. M., 2009. Population features of the spider crab Acanthonyx scutiformis (Dana, 1851) (Crustacea, Majoidea, Epialtidae) associated with rocky-shore algae from southeastern Brazil. Panam. J. Aquat. Sci., 4: 87-95.

VariscoM.VinuesaJ., 2011. Reproductive biology of the spider crab Leucippa pentagona (Decapoda: Epialtidae), in Bustamante Bay, Argentina. Lat. Am. J. Aquat. Res., 39: 471-480.

Vernet-CornubertG., 1958. Biologie générale de Pisa tetraodon. Bull. Inst. Océanogr. Monaco, 1113: 1-52, figs. 1-19, pls. 1-4.

WahleR. A.SteneckR. S., 1991. Recruitment habitats and nursery grounds of the American lobster Homarus americanus: a demographic bottleneck? Mar. Ecol. Prog. Ser., 69: 231-243.

WickstenM. K.BostickC. R.II, 1983. Migration of kelp crabs (Pugettia producta) at San Pedro, California. J. Crust. Biol., 3: 364-366.

Figures

  • Map showing the study site on the coast of Nagai, Sagami Bay. CCA, crustose coralline algae; ACA, articulated coralline algae; GC, Grateloupia cornea Okamura; GE, gelidiacean algae. Shaded areas indicate upper subtidal habitats (Stn. 3).

    View in gallery
  • Chelal, gonopodal and abdominal morphologies characterizing each ontogenetic stage of Pugettia vulgaris Ohtsuchi, Kawamura & Takeda, 2014. A, B, Chela: small chela (A) and large chela (B); C, D, male first gonopod (G1): simple unfolded G1 (C) and apically trilobate G1 (D), arrow indicate mesial lobe; E-G, female abdomen: subtriangular (E), sub-oval (F), and expanded (G).

    View in gallery
  • Frequency distribution of the maximum carapace width (CW) of juveniles, males and females of Pugettia vulgaris Ohtsuchi, Kawamura & Takeda, 2014 on the coast of Nagai, Sagami Bay. Black, grey and white bars indicate Stage I (MI or FI), Stage II (MII or FII) and Stage III (MIII or FIII) individuals, respectively.

    View in gallery
  • Relationships between the maximum carapace width (lnCW) and chela length (lnChL) or abdomen width (lnAW) of Pugettia vulgaris Ohtsuchi, Kawamura & Takeda, 2014 on the coast of Nagai, Sagami Bay. Black, grey, and white circles indicate Stage I (MI or FI), Stage II (FII or FII), and Stage III (MIII or FIII) individuals, respectively.

    View in gallery
  • Estimated size at 50% maturity (SM50) of males and females of Pugettia vulgaris Ohtsuchi, Kawamura & Takeda, 2014 using the two different criteria for maturity. Arrows indicate SMml50 (= SMII50, on the basis of trilobate G1) or SMmm50 (= SMIII50, on the basis of enlarged chelae) in males, and SFII50 or SMmm50 (= SFIII50, SMml50, on the basis of expanded, domed abdomen) in females.

    View in gallery
  • Mean density (mean ± SD) of Pugettia vulgaris Ohtsuchi, Kawamura & Takeda, 2014 during two years sampling period in the 11 different habitats on the coast of Nagai, Sagami Bay. CCA, crustose coralline algae; ACA, articulated coralline algae; GC, Grateloupia cornea Okamura, 1913; GE, gelidiacean algae; SB, sandy bottom; SD, shell debris; SF, Sargassum fusiforme (Harvey) Setchell, 1931. The number following each habitat name indicates the sampling station where each habitat was located. Bars with different letters are significantly different (Tukey-Kramer test, p<0.05).

    View in gallery
  • Monthly changes in the mean density (mean ± SD) of Pugettia vulgaris Ohtsuchi, Kawamura & Takeda, 2014 during two years sampling period on the coast of Nagai, Sagami Bay. GE1, gelidiacean algal turfs at Stn. 1; ACA1 and ACA2, articulated coralline algal turfs at Stn. 1 and Stn. 2, respectively. Bars indicate standard deviations. Sampling was not done at GE1 in May 2009.

    View in gallery
  • Monthly changes in the carapace width class composition of Pugettia vulgaris Ohtsuchi, Kawamura & Takeda, 2014 during the two year sampling period on the coast of Nagai, Sagami Bay. GE1, gelidiacean algal turfs at Stn. 1; ACA1 and ACA2, articulated coralline algal turfs at Stn. 1 and Stn. 2, respectively. Sampling was not done in GE1 in May 2009. Individuals collected in February 2009 in ACA1 and April 2009 in ACA2 were not included in the analysis because they were heavily damaged.

    View in gallery
  • Monthly changes in juvenile abundance (upper) and ontogenetic stage composition (lower) of Pugettia vulgaris Ohtsuchi, Kawamura & Takeda, 2014 during the two year sampling period on the coast of Nagai, Sagami Bay. GE1, gelidiacean algal turfs at Stn. 1; ACA1 and ACA2, articulated coralline algal turfs at Stn. 1 and Stn. 2, respectively. Black, grey, and white bars indicate Stage I (MI or FI), Stage II (MII or FII), and Stage III (MIII or FIII) individuals, respectively. Arrows indicate the months when the ovigerous females were collected. Sampling was not done in GE1 in May 2009. Individuals collected in February 2009 in ACA1 and April 2009 in ACA2 were not included in the analysis because they were heavily damaged.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 9 9 4
Full Text Views 3 3 3
PDF Downloads 0 0 0
EPUB Downloads 0 0 0