We used both stomach content and stable isotope analyses to describe the feeding ecology of Siberian prawns Palaemon modestus (Heller, 1862), a non-native caridean shrimp that is a relatively recent invader of the lower Snake River. Based on identifiable prey in stomachs, the opossum shrimp Neomysis mercedis Holmes, 1896 comprised up to 34-55% (by weight) of diets of juvenile to adult P. modestus, which showed little seasonal variation. Other predominant items/taxa consumed included detritus, amphipods, dipteran larvae, and oligochaetes. Stable isotope analysis supported diet results and also suggested that much of the food consumed by P. modestus that was not identifiable came from benthic sources — predominantly invertebrates of lower trophic levels and detritus. Palaemon modestus consumption of N. mercedis may pose a competitive threat to juvenile salmon and resident fishes which also rely heavily on that prey.
Nous avons utilisé à la fois les contenus stomacaux et les analyses par isotope stable pour décrire l’écologie de l’alimentation de la crevette de Sibérie Palaemon modestus (Heller, 1862), une crevette non indigène qui est un envahisseur relativement récent du bas de la rivière Snake. Sur la base des proies identifiables dans l’estomac, la mysidacé Neomysis mercedis Holmes, 1896, représente jusqu’à 34-55% (en poids) du régime des juvéniles aux adultes de P. modestus, avec peu de variations saisonnières. Les autres items/taxa consommés incluent des détritus, amphipodes, larves de diptères et oligochètes. Les analyses par isotopes stables supportent les résultats du régime et suggèrent aussi que l’essentiel de la nourriture consommée par P. modestus, qui n’était pas identifiable, provient de sources benthiques — de façon prédominante des invertébrés de niveau trophique bas et des détritus. La consommation de N. mercedis par Palaemon modestus représente une menace compétitive pour les juvéniles de saumons et les poissons résidants qui dépendent massivement de cette proie.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Anderson M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26: 32-46.
Barnes C., Sweeting C. J., Jennings S., Barry J. T., Polunin N. C. V., 2007. Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. Functional Ecology, 21: 356-362.
Bell S. S., Coull B. C., 1978. Field evidence that shrimp predation regulates meiofauna. Oecologia, 35: 141-148.
Bennett D. H., Nightengale T. L., 1994. Comparison and dynamics of the benthic macroinvertebrate community of Lower Granite, Little Goose, and Lower Monumental reservoirs. (Report by the Department of Fish and Wildlife, University of Idaho, Moscow).
Collins P. A., Paggi J. C., 1998. Feeding ecology of Macrobrachium borellii (Nobili) (Decapoda: Palaemonidae) in the flood valley of the River Paraná, Argentina. Hydrobiologia, 362: 21-30.
Connor W. P., Tiffan K. F., Plumb J. M., Moffitt C. M., 2013. Evidence for density-dependent changes in growth, downstream movement, and size of Chinook salmon subyearlings in a large-river landscape. Transactions of the American Fisheries Society, 142: 1453-1468.
Emmett R. L., Hinton S. A., Logan D. J., McCabe G. T. Jr, 2002. Introduction of a Siberian freshwater shrimp to western North America. Biological Invasions, 4: 447-450.
France R. L., 1995. Differentiation between littoral and pelagic foodwebs in lakes using stable carbon isotopes. Limnology and Oceanography, 40: 1310-1313.
González-Ortegón E., Cuesta J. A., Pascual E., Drake P., 2010. Assessment of the interaction between the white shrimp, Palaemon longirostris, and the exotic oriental shrimp, Palaemon macrodactylus, in a European estuary (SW Spain). Biological Invasions, 12: 1731-1745.
González-Ortegón E., Walton M. E. M., Moghaddam B., Vilas C., Prieto A., Kennedy H. A., Pedro Cañavate J., Le Vay L., 2010. Flow regime in a restored wetland determines trophic links and species composition in the aquatic macroinvertebrate community. Science of the Total Environment, 503-504: 241-250.
Haskell C. A., Baxter R. D., Tiffan K. F., 2006. Range expansion of an exotic Siberian prawn to the lower Snake River. Northwest Science, 80: 311-316.
Hecky R. E., Hesslein R. H., 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society, 14: 631-653.
Holthuis L. B., 1980. Shrimps and prawns of the world: an annotated catalogue of species of interest to fisheries. FAO Fisheries Synopsis, 125(1): 1-271.
Muir W. D., Coley T. C., 1996. Diet of yearling Chinook salmon and feeding success during downstream migration in the Snake and Columbia rivers. Northwest Science, 70: 298-305.
Post D. M., 2002. Using stable isotopes to estimate trophic position: model, methods and assumptions. Ecology, 83: 703-718.
Power M., Guiguer K. R. R. A., Barton D. R., 2003. Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. Rapid Communications in Mass Spectrometry, 17: 1619-1625.
Rondorf D. W., Gray G. A., Fairley R. B., 1990. Feeding ecology of subyearling Chinook salmon in riverine and reservoir habitats of the Columbia River. Transactions of the American Fisheries Society, 119: 16-24.
Siegfried C. A., 1982. Trophic relations of Crangon franciscorum Stimpson and Palaemon macrodactylus Rathbun: predation on the opossum shrimp, Neomysis mercedis Holmes. Hydrobiologia, 89: 129-139.
Sitts R. M., Knight A. W., 1979. Predation by the estuarine shrimps Crangon franciscorum Stimpson and Palaemon macrodactylus Rathbun. Biological Bulletin, 156: 356-368.
St. John S. J., Erhardt J. M., Bickford B. K., Rhodes T. N., Tiffan K. F., 2014. Distribution and abundance of potential invertebrate prey for juvenile fall Chinook salmon in the Snake River. In: Tiffan K. F., Connor W. P., Bellgraph B. J., Chittaro P. M. (eds.), Snake River fall Chinook salmon life history investigations. Annual report to the Bonneville Power Administration, project 200203200, Portland, OR: 91-131.
Tiffan K. F., Erhardt J. M., St. John S. J., 2014. Prey availability, consumption, and quality contribute to variation in growth of subyearling Chinook salmon rearing in riverine and reservoir habitats. Transactions of the American Fisheries Society, 143: 219-229.
Tiffan K. F., Hatten J. R., Trachtenbarg D. A., 2015. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir. River Research and Applications, in press: DOI:10.1002/rra.2934.
Vander Zanden M. J., Cabana G., Rasmussen J. B., 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (15 N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences, 54: 1142-1158.
Vander Zanden M. J., Casselman J. M., Rasmussen J. R., 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature, 401: 464-467.
Vander Zanden M. J., Rasmussen J. B., 1996. A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecological Monographs, 66: 451-477.
Wahle R. A., 1985. The feeding ecology of Crangon franciscorum and Crangon nigricauda in San Francisco Bay, California. Journal of Crustacean Biology, 5: 311-326.
Wilcox J. R., Jeffries H. P., 1974. Feeding habits of the sand shrimp Crangon septemspinosa. Biological Bulletin, 146: 424-434.
Xu J., Zhang M., Xie P., 2008. Stable isotope changes in freshwater shrimps (Palaemon modestus and Macrobrachium nipponensis): trophic pattern implications. Hydrobiologia, 605: 45-54.
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 378 | 41 | 2 |
| Full Text Views | 176 | 1 | 0 |
| PDF Views & Downloads | 21 | 3 | 0 |
We used both stomach content and stable isotope analyses to describe the feeding ecology of Siberian prawns Palaemon modestus (Heller, 1862), a non-native caridean shrimp that is a relatively recent invader of the lower Snake River. Based on identifiable prey in stomachs, the opossum shrimp Neomysis mercedis Holmes, 1896 comprised up to 34-55% (by weight) of diets of juvenile to adult P. modestus, which showed little seasonal variation. Other predominant items/taxa consumed included detritus, amphipods, dipteran larvae, and oligochaetes. Stable isotope analysis supported diet results and also suggested that much of the food consumed by P. modestus that was not identifiable came from benthic sources — predominantly invertebrates of lower trophic levels and detritus. Palaemon modestus consumption of N. mercedis may pose a competitive threat to juvenile salmon and resident fishes which also rely heavily on that prey.
Nous avons utilisé à la fois les contenus stomacaux et les analyses par isotope stable pour décrire l’écologie de l’alimentation de la crevette de Sibérie Palaemon modestus (Heller, 1862), une crevette non indigène qui est un envahisseur relativement récent du bas de la rivière Snake. Sur la base des proies identifiables dans l’estomac, la mysidacé Neomysis mercedis Holmes, 1896, représente jusqu’à 34-55% (en poids) du régime des juvéniles aux adultes de P. modestus, avec peu de variations saisonnières. Les autres items/taxa consommés incluent des détritus, amphipodes, larves de diptères et oligochètes. Les analyses par isotopes stables supportent les résultats du régime et suggèrent aussi que l’essentiel de la nourriture consommée par P. modestus, qui n’était pas identifiable, provient de sources benthiques — de façon prédominante des invertébrés de niveau trophique bas et des détritus. La consommation de N. mercedis par Palaemon modestus représente une menace compétitive pour les juvéniles de saumons et les poissons résidants qui dépendent massivement de cette proie.
| All Time | Past 365 days | Past 30 Days | |
|---|---|---|---|
| Abstract Views | 378 | 41 | 2 |
| Full Text Views | 176 | 1 | 0 |
| PDF Views & Downloads | 21 | 3 | 0 |