The metallothionein gene from the Oriental river prawn Macrobrachium nipponense (De Haan, 1849): characterization and expression in response to hypoxia and reoxygenation

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


Since mammals make use of metallothioneins (MTs) to protect against hypoxia-generated reactive oxygen species (ROS), here we investigate whether MTs have the same effect in the Oriental river prawn Macrobrachium nipponense (De Haan, 1849). Levels of M. nipponense MT (MnMT) mRNA in different tissues were analysed using a real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). We found that MnMT is differentially expressed in the haemocytes, intestine, gills, heart, hepatopancreas and muscle. The highest levels of expression occurred in the hepatopancreas and heart. The results of the qRT-PCR and Western blot indicated that MnMT mRNA and protein expression in the hepatopancreas increased significantly in response to hypoxia 24 h and followed by 1 h reoxygenation compared to normoxia. Similarly, there were also significant increases in respiratory bursts and ROS production in the hepatopancreas. The MT protein possibly has a protective effect against ROS generated during hypoxia and reoxygenation stimuli.

The metallothionein gene from the Oriental river prawn Macrobrachium nipponense (De Haan, 1849): characterization and expression in response to hypoxia and reoxygenation

in Crustaceana



AbeleE.PhilipE.GonzalezP. M.PuntaruloS.2007. Marine invertebrate mitochondria and oxidative stress. Front. Biosci.12: 933-946.

AhearnG. A.MandalP. K.MandalA.2004. Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J. Comp. Physiol. B: Biochem. Mol. Biol.174: 439-452.

AmiardJ. C.Amiard-TriquetC.BarkaS.PellerinJ.RainbowP. S.2006. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat. Toxicol.76: 160-202.

AsselmanJ.GlaholtS. P.SmithZ.SmaggheG.JanssenC. R.ColbourneJ. K.ShawJ. R.De SchamphelaereK. A. C.2012. Functional characterization of four metallothionein genes in Daphnia pulex exposed to environmental stressors. Aquat. Toxicol.110: 54-65.

BraunW.VasakM.RobbinsA. H.StoutC. D.WagnerG.KagiJ. H.WuthrichK.1992. Comparison of the NMR solution structure and the X-ray crystal structure of rat metallothionein-2. Proc. Natl. Acad. Sci. U.S.A.89: 10124-10128.

ChabanonH.NuryD.MickleburghI.BurtleB.HeskethJ.2004. Characterization of the cis-acting element directing perinuclear localization of the metallothionein-1 mRNA. Biochem. Soc. Trans.32: 702-704.

ChihuailafR. H.ContrerasP. A.WittwerF. G.2002. Pathogenesis of oxidative stress: consequences and evaluation in animal health. Veterinaria (Méx.)33: 265-284.

DiazR. J.2001. Overview of hypoxia around the world. J. Environ. Qual.30: 275-281.

DuanY. F.ZhangJ. S.DongH. B.WangY.LiuQ. S.LiH.2016. Effect of desiccation and resubmersion on the oxidative stress response of the kuruma shrimp Marsupenaeus japonicus. Fish. Shellfish. Immunol.49: 91-99.

EllingtonW. R.1983. The recovery from anaerobic metabolism in invertebrates. J. Exp. Zool. A228: 431-444.

FangX.WuJ.WeiG.1997. Irradiation-induced binding of metallothionein to DNA. Radiat. Phys. Chem.50: 471-473.

García-TrianaA.Gomez-JimenezS.Peregrino-UriarteA. B.Lopez-ZavalaA.Gonzalez-AguilarG.Sotelo-MundoR. R.Valenzuela-SotoE. M.Yepiz-PlascenciaG.2010. Expression and silencing of selenoprotein M (SelM) from the white shrimp Litopenaeus vannamei: effect on peroxidase activity and hydrogen peroxide concentration in gills and hepatopancreas. Comp. Biochem. Physiol. A: Mol. Integr. Physiol.155: 200-204.

GuanY. Q.LiL. I.WangH. C.WangZ. L.2010. Effects of hypoxia on respiratory metabolism and antioxidant capability of Macrobrachium nipponense. J. Hebei Univ.30: 301-306 (in Chinese with English abstract).

HayesJ. D.McLellanL. I.1999. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic. Res.31: 273-300.

JiangH.LiF. H.XieY. S.HuangB. X.ZhangJ. K.ZhangJ. Q.ZhangC. S.LiS. H.XiangJ. H.2009. Comparative proteomic profiles of the hepatopancreas in Fenneropenaeus chinensis response to hypoxic stress. Proteomics9: 3353-3367.

KagiJ. H.KojimaY.1987. Chemistry and biochemistry of metallothionein. Experientia Suppl.52: 25-61.

KlingP. G.OlssonP.2000. Involvement of differential metallothionein expression in free radical sensitivity of RTG-2 and CHSE-214 cells. Free Radic. Biol. Med.28: 1628-1637.

KondohM.KamadaK.KuronagaM.HigashimotoM.TakiguchiM.WtanabeY.SatoM.2003. Antioxidant property of metallothionein in fasted mice. Toxicol. Lett.143: 301-306.

KowaltowskiA. Souza-PintoN. C.CastilhoR. F.VercesiA. E.2009. Mitochondria and reactive oxygen species. Free Radic. Bio. Med.47: 333-343.

LivakK. J.SchmittgenT. D.2001. Analysis of relative gene expression data using realtime quantitative PCR and the 2(−Delta Delta C(T)) method. Methods5: 402-408.

LushchakV. I.LushchakL. P.MotaA. A.Hermes-LimaM.2001. Oxidative stress and antioxidant defenses in goldfish Carassius auratus during anoxia and reoxygenation. Am. J. Physiol. Regul. Integr. Comp. Physiol.280: R100-R107.

MaK. Y.FengJ.LinJ.LiJ.2011. The complete mitochondrial genome of Macrobrachium nipponense. Gene487: 160-165.

MaoH.WangD. H.YangW. X.2012. The involvement of metallothionein in the development of aquatic invertebrate. Aquat. Toxicol.110: 208-213.

MargoshoesM.ValleeB. L.1957. Cadmium protein from equine kidney cortex. J. Am. Chem. Soc.79: 4813-4814.

MoksnesP.LindahlU.HarxC.1995. Metallothionein as a bioindicator of heavy metal exposure in the tropical shrimp, Penaeus vannamei: a study of dosedependent induction. Mar. Environ. Res.39: 143-146.

NordbergM.NordbergG. F.2000. The role of cleavage of cell structures during apoptosis. Cell. Mol. Biol. (Noisy-le-grand)46: 451-463.

NuryD.ChabanonH.Levadoux-MartinM.HeskethJ.2005. An eleven nucleotide section of the 3′-untranslated region is required for perinuclear localization of rat metallothionein-1 mRNA. Biochem. J.387: 419-428.

Parrilla-TaylorD. P.Zenteno-SavínT.2011. Antioxidant enzyme activities in Pacific white shrimp (Litopenaeus vannamei) in response to environmental hypoxia and reoxygenation. Aquaculture318: 379-383.

PoeggelerB.ReiterR. J.TanD. X.ChenL. D.ManchesterL. C.1993. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J. Pineal Res.14: 151-168.

QiaoH.XiongY. W.ZhangW. Y.FuH. G.JiangS. F.SunS. M.BaiH. K.JinS.GongY. S.2015. Characterization, expression, and function analysis of gonad-inhibiting hormone in Oriental river prawn, Macrobrachium nipponense and its induced expression by temperature. Comp. Biochem. Physiol. A: Mol. Integr. Physiol.185: 1-8.

ReiterR. J.1995. Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J.9: 526-533.

Ruttkay-NedeckyB.NejdlL.GumulecJ.ZitkaO.MasarikM.EckschlagerT.StiborovaV. A.KizekR.2013. The role of metallothionein in oxidative stress. Int. J. Mol. Sci.14: 6044-6066.

RossS. W.DaltonD. A.KramerS.ChristensenB. L.2001. Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen. Comp. Biochem. Physiol. C: Toxicol. Pharmacol.130: 289-303.

SatoM.BremnerI.1993. Oxygen free radicals and metallothionein. Free Radic. Biol. Med.14: 325-337.

Serra-BatisteM.ColsN.AlcarazL. A.DonaireA.Gonzalez-DuarteP.VasakM.2010. The metal-binding properties of the blue crab copper specific CuMT-2: a crustacean metallothionein with two cysteine triplets. J. Biol. Inorg. Chem.15: 759-776.

ShenH.ZhouX.BaiA.RenX.2013. cDNA cloning of retinoid-X receptor gene from Macrobrachium nipponense and different responses of two splice variants during the molting cycle. Crustaceana86: 1586-1604.

SunS. M.GuZ. M.FuH. T.ZhuJ.GeX. P.XuanF. J.2016. Molecular cloning, characterization, and expression analysis of p53 from the Oriental river prawn, Macrobrachium nipponense, in response to hypoxia. Fish & Shellfish Immunology54: 68-76.

SunS. M.XuanF. J.GeX. P.FuH. T.ZhuJ.ZhangS. Y.2014. Identification of differentially expressed genes in hepatopancreas of Oriental river prawn, Macrobrachium nipponense exposed to environmental hypoxia. Gene534: 298-306.

SyringR. A.BrouwerT. H.BrouwerM.2000. Cloning and sequencing of cDNAs encoding for a novel copper-specific metallothionein and two cadmium-inducible metallothioneins from the blue crab Callinectes sapidus. Comp. Biochem. Physiol. C: Toxicol. Pharmacol.125: 325-332.

Trasviña-ArenasC. H.Garcia-TrianaA.Peregrino-UriarteA. B.Yepiz-PlascenciaG.2013. White shrimp Litopenaeus vannamei catalase: gene structure, expression and activity under hypoxia and reoxygenation. Comp. Biochem. Physiol. B: Biochem. Mol. Biol.164: 44-52.

WelkerA. F.MoreiraD. C.CamposE. G.Hermes-LimaM.2013. Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp. Biochem. Physiol. A: Mol. Integr. Physiol.165: 384-404.

Wilhelm-FilhoD.TorresM. A.Zaniboni-FilhoE.PedrosaR. C.2005. Effect of different oxygen tensions on weight gain, feed conversion, and antioxidant status in piapara, Leporinus elongatus (Valenciennes, 1847). Aquaculture213: 120-127.

WuJ.ChenH.2005. Metallothionein induction and heavy metal accumulation in white shrimp Litopenaeus vannamei exposed to cadmium and zinc. Comp. Biochem. Physiol. C: Toxicol. Pharmacol.140: 383-394.


  • View in gallery

    (A) Nucleotide and deduced amino-acid sequences of MnMT gene. The deduced amino acid sequence is shown as a capital letter under each codon of the coding sequence. The characteristic 18 cysteine residues MTs are shown in bold; (B) Clustal alignment of MT amino acid sequences from various organisms. The crustacean MT N-terminus motifs P-[GD]-P-CC-X-(3,4)-C-X-C are shown in the red box. The cysteine residues characteristic of metallothioneins are shown in the last line. This figure is published in colour in the online edition of this journal, which can be accessed via

  • View in gallery

    The phylogenetic tree based on the alignment of known amino acid sequences of MnMT proteins. The percentages of replicate trees in which the associated taxa are clustered together in the bootstrap test (1000 replicates) are shown next to the branches. GenBank accession numbers are provided next to each species name.

  • View in gallery

    Tissue-specific mRNA expression of MnMT determined using quantitative real-time PCR. Vertical bars represent the mean ± SE values for triplicate samples.

  • View in gallery

    Quantitative real-time PCR analysis of MnMT expression in the hepatopancreas of the Oriental river prawn exposed to normoxia (Control) and 24 h hypoxia (H24); and after recovery of 1 h (R1), 2 h (R2) and 4 h (R4) in normoxic water. Significant differences (P<0.05) in MnMT expression between the challenge and control groups are indicated with asterisks. Values are mean ± SE for triplicate samples.

  • View in gallery

    Expression of MnMT in the hepatopancreas of the Oriental river prawn exposed to normoxia (Control); and after recovery of 1 h (R1), 2 h (R2) and 4 h (R4) in normoxic water. β-Actin was used as the loading control. This figure is published in colour in the online edition of this journal, which can be accessed via

  • View in gallery

    Respiratory burst activity (A) and ROS generation capacity (B) in the hepatopancreas of Macrobrachium nipponense at different time intervals after hypoxia and reoxygenation. Asterisks indicate a significant difference (P<0.05) between the treatment and control groups. Values are mean ± SE for triplicate samples.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 14 14 6
Full Text Views 7 7 7
PDF Downloads 0 0 0
EPUB Downloads 0 0 0