Molecular characterization and expression of the p38 MAPK gene from the ridgetail white prawn, Palaemon carinicauda Holthuis, 1950 (Decapoda, Palaemonidae)

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The p38 mitogen-activated protein kinases (MAPK) are a kind of Ser/Thr protein kinases that convert extracellular stimuli into a wide range of cellular response, appearing to function not only in stress stimuli but also in development. To explore the function of p38 MAPK in Palaemon carinicauda Holthuis, 1950, we cloned and characterized the full-length cDNA sequence (GenBank accession number KX893515) (designated as Pc-p38). The results showed that the open reading frame (ORF) of Pc-p38 was 1098 bp and it encoded a protein of 365 amino acids. Pc-p38 contained the conserved structures of a Thr-Gly-Tyr (TGY) motif and a substrate-binding site, Ala-Thr-Arg-Trp (ATRW), and was shown to have a close phylogenetic relationship to other p38 MAPKs in crustaceans. The tissue distribution patterns showed that Pc-p38 was widely expressed in all tissues, with highest expression in the hepatopancreas and ovary. Quantitative real-time PCR revealed that Pc-p38 was upregulated during ecdysis, reaching a peak at 5 min post-moult, suggesting that Pc-p38 may be involved in muscle remodeling after moulting. In addition, the expression of Pc-p38 increased following exposure to different concentrations of mercury, in a dose- and time-dependent manner. In conclusion, an Pc-p38 gene was cloned and its role determined at different times post-moult and after stress from different concentrations of mercury, to further reveal the possible functions of p38 MAPK in P. carinicauda.

Crustaceana

International Journal of Crustacean Research

Sections

References

AguadoA.GalanM.ZhenyukhO.WiggersG. A.RoqueF. R.RedondoS.PecanhaF.MartinA.FortunoA.CachofeiroV.TejerinaT.SalaicesM.BrionesA. M., 2013. Mercury induces proliferation and reduces cell size in vascular smooth muscle cells through MAPK, oxidative stress and cyclooxygenase-2 pathways. Toxicology & Applied Pharmacology, 268: 188-200.

AlmogT.NaorZ., 2008. Mitogen activated protein kinases (MAPKs) as regulators of spermatogenesis and spermatozoa functions. Molecular & Cellular Endocrinology, 282: 39-44.

BaldassareJ. J.BiY.BelloneC. J., 1999. The role of p38 mitogen-activated protein kinase in IL-1β transcription. Journal of Immunology, 162: 5367-5373.

BenderM.Lymberidi-SettimoE.GrothE.III, 2014. New mercury treaty exposes health risks. Journal of Public Health Policy, 35: 1-13.

BeyaertR.CuendaA.Vanden BergheW.PlaisanceS.LeeJ. C.HaegemanG.CohenP.FiersW., 1996. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO Journal, 15: 1914-1923.

BonaventuraR.PomaV.CostaC.MatrangaV., 2005. UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochemical & Biophysical Research Communications, 328: 150-157.

BrewsterJ. L.de ValoirT.DwyerN. D.WinterE.GustinM. C., 1993. An osmosensing signal transduction pathway in yeast. Science, 260: 1760-1762.

BrienP.PugazhendhiD.WoodhouseS.OxleyD.PellJ. M., 2013. p38α MAPK regulates adult muscle stem cell fate by restricting progenitor proliferation during postnatal growth and repair. Stem Cells, 31: 1597-1610.

CaiJ.HuangY. H.WeiS. N.HuangX. H.YeF. Z.FuJ.QinQ. W., 2011. Characterization of p38 MAPKs from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. Fish & Shellfish Immunology, 31: 1129-1136.

CargnelloM.RouxP. P., 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiology & Molecular Biology Reviews, 75: 50-83.

ChenJ.XieC.TianL.HongL.WuX.HanJ., 2010. Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proceedings of the National Academy of Sciences of the United States of America, 107: 20774-20779.

FujiiR.YamashitaS.HibiM.HiranoT., 2000. Asymmetric p38 activation in zebrafish: its possible role in symmetric and synchronous cleavage. Journal of Cell Biology, 150: 1335-1348.

GaitanakiC.KalpachidouT.AggeliI. K.PapazafiriP.BeisI., 2007a. CoCl2 induces protective events via the p38-MAPK signalling pathway and ANP in the perfused amphibian heart. Journal of Experimental Biology, 210: 2267-2277.

GaitanakiC.PliatskaM.StathopoulouK.BeisI., 2007b. Cu2+ and acute thermal stress induce protective events via the p38-MAPK signalling pathway in the perfused Rana ridibunda heart. Journal of Experimental Biology, 210: 438-446.

GibsonR.BarkerP. L., 1979. The decapod hepatopancreas. Oceanography & Marine Biology, 17: 285-346.

GillespieM. A.Le GrandF.ScimeA.KuangS.Von MaltzhahnJ.SealeV.CuendaA.RanishJ. A.RudnickiM. A., 2009. p38-γ-dependent gene silencing restricts entry into the myogenic differentiation program. The Journal of Cell Biology, 187: 991-1005.

HajA. J. E.HoulihanD. F., 1987. In vitro and in vivo protein synthesis rates in a crustacean muscle during the moult cycle. Journal of Experimental Biology, 127: 413-426.

HanJ.LeeJ. D.BibbsL.UlevitchR. J., 1994. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science, 265: 808-811.

HanZ. S.EnslenH.HuX.MengX.WuI. H.BarrettT.DavisR. J.IpY. T., 1998. A conserved p38 mitogen-activated protein kinase pathway regulates Drosophila immunity gene expression. Molecular & Cellular Biology, 18: 3527-3539.

HanksS. K.HunterT., 1995. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB Journal, 9: 576-596.

HeS.QianZ.YangJ.WangX.MiX.LiuY.HouF.LiuQ.LiuX., 2013. Molecular characterization of a p38 MAPK from Litopenaeus vannamei and its expression during the moult cycle and following pathogen infection. Developmental & Comparative Immunology, 41: 217-221.

HolthuisL. B., 1950. The Decapoda of the Siboga Expedition. Part X. The Palaemonidae. Siboga Expeditie Monographie, 39: 1-268.

JiangY.ChenC.LiZ.GuoW.GegnerJ. A.LinS.HanJ., 1996. Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). Journal of Biological Chemistry, 271: 17920-17926.

JiangY.GramH.ZhaoM.NewL.GuJ.FengL.PadovaF. D.UlevitchR. J.HanJ., 1997. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38δ. Journal of Biological Chemistry, 272: 30122-30128.

JiangH.LiF.XieY.HuangB.ZhangJ.ZhangJ.ZhangC.LiS.XiangJ., 2009. Comparative proteomic profiles of the hepatopancreas in Fenneropenaeus chinensis response to hypoxic stress. Proteomics, 9: 3353-3367.

JohnsonG. L.LapadatR., 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298: 1911-1912.

JonakC.NakagamiH.HirtH., 2004. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiology, 136: 3276-3283.

KefaloyianniE.GourgouE.FerleV.KotsakisE.GaitanakiC.BeisI., 2005. Acute thermal stress and various heavy metals induce tissue-specific pro- or anti-apoptotic events via the p38-MAPK signal transduction pathway in Mytilus galloprovincialis (Lam.). Journal of Experimental Biology, 208: 4427-4436.

KerenA.BengalE.FrankD., 2005. p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development. Developmental Biology, 288: 73-86.

KerenA.TamirY.BengalE., 2006. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Molecular & Cellular Endocrinology, 252: 224-230.

KimS. H.JohnsonV. J.SharmaR. P., 2002. Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: differential modulation of NF-κb and p38 MAPK signaling pathways. Nitric Oxide, 7: 67-74.

KrensS. F.SpainkH. P.Snaar-JagalskaB. E., 2006. Functions of the MAPK family in vertebrate-development. FEBS Letters, 580: 4984-4990.

KyriakisJ. M.AvruchJ., 1990. pp54 microtubule-associated protein 2 kinase. A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-L-lysine. Journal of Biological Chemistry, 265: 17355-17363.

LamborgC. H.HammerschmidtC. R.BowmanK. L.SwarrG. J.MunsonK. M.OhnemusD. C.LamP. J.HeimbergerL. E.RijkenbergM. J.SaitoM. A., 2014. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature, 512: 65-68.

LarkinM. A.BlackshieldsG.BrownN. P.ChennaR.McgettiganP. A.McWilliamH.ValentinF.WallaceI. M.WilmA.LopezR., 2007. Clustal W and clustal X version 2.0. Bioinformatics, 23: 2947-2948.

LiZ.JiangY.UlevitchR. J.HanJ., 1996. The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochemical & Biophysical Research Communications, 228: 334-340.

NataleD. R.PaligaA. J.BeierF.D’souzaS. J.WatsonA. J., 2004. p38 MAPK signaling during murine preimplantation development. Developmental Biology, 268: 76-88.

PalaciosD.MozzettaC.ConsalviS.CarettiG.SacconeV.ProserpioV.MarquezV. E.ValenteS.MaiA.ForcalesS. V., 2010. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration. Cell Stem Cell, 7: 455-469.

PearsonG.RobinsonF.BeersG. T.XuB. E.KarandikarM.BermanK.CobbM. H., 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocrine Reviews, 22: 153-183.

QianZ.XiaoM.WangX.HeS.LiuY.HouF.QiaoL.LiuX., 2013. cDNA cloning and expression analysis of myostatin/GDF11 in shrimp. Litopenaeus vannamei. Comparative Biochemistry & Physiology Part A Molecular & Integrative Physiology, 165: 30-39.

RampalliS.LiL. F.MakE.GeK.BrandM.TapscottS. J.DilworthF. J., 2007. p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation. Nature Structural & Molecular Biology, 14: 1150-1156.

RobbinsD. J.ZhenE.OwakiH.VanderbiltC. A.EbertD.GeppertT. D.CobbM. H., 1993. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. Journal of Biological Chemistry, 268: 5097-5106.

RouxP. P.BlenisJ., 2004. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiology & Molecular Biology Reviews, 68: 320-344.

SchmittgenT. D.LivakK. J., 2008. Analyzing real-time PCR data by the comparative C(T) method. Nature Protocols, 3: 1101-1108.

ShiH.YanX.RuanL.XuX., 2012a. A novel JNK from Litopenaeus vannamei involved in white spot syndrome virus infection. Developmental & Comparative Immunology, 37: 421-428.

ShiH.YanX.XuX.RuanL., 2012b. Molecular cloning and characterization of a cDNA encoding extracellular signal-regulated kinase from Litopenaeus vannamei. Fish & Shellfish Immunology, 33: 813-820.

TamuraK.StecherG.PetersonD.FilipskiA.KumarS., 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology & Evolution, 30: 2725-2729.

WidmannC.GibsonS.JarpeM. B.JohnsonG. L., 1999. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiological Reviews, 79: 143-180.

XuW. J.XieJ. J.HuiS.LiC. W., 2010. Hematodinium infections in cultured ridgetail white prawns, Exopalaemon carinicauda, in eastern China. Aquaculture, 300: 25-31.

YanH.ZhangS.LiC. Z.ChenY. H.ChenY. G.WengS. P.HeJ. G., 2013. Molecular characterization and function of a p38 MAPK gene from Litopenaeus vannamei. Fish & Shellfish Immunology, 34: 1421-1431.

YodmuangS.UdomkitA.TreerattrakoolS.PanyimS., 2004. Molecular and biological characterization of moult-inhibiting hormone of Penaeus monodon. Journal of Experimental Marine Biology & Ecology, 312: 101-114.

ZhaoJ. C.WangY. L.LiQ.ZhuM.SunW. J.WuT. M.WangQ.HeL., 2014. Molecular cloning and characterization of p38 gene in the Chinese mitten crab, Eriocheir sinensis. Aquaculture Research, 47: 1353-1363.

ZhuM.SunW. J.WangY. L.LiQ.YangH. D.DuanZ. L.HeL.WangQ., 2015. p38 participates in spermatogenesis and acrosome reaction prior to fertilization in Chinese mitten crab Eriocheir sinensis. Gene, 559: 103-111.

Figures

  • Nucleotide and deduced amino-acid sequences of Pc-p38 cDNA of P. carinicauda. The letters in the boxes indicate the start codon (ATG), the stop codon (TAA), and the signal sequence of polyadenylation (AATAAA). The sequence of the predicted phosphorylation motif TGY and the substrate-binding site ATRW are shaded.

    View in gallery
  • The phylogenetic tree constructed with the Neighbour-Joining method showing the relationship of the Palaemon carinicauda Holthuis, 1950 Pc-p38 amino-acid sequence with other p38 MAPKs from various species.

    View in gallery
  • Distribution of Pc-p38 in different tissues of Palaemon carinicauda Holthuis, 1950. E, eyestalk; G, gill; H, heart; He, hepatopancreas; O, ovary; S, stomach; I, intestines; M, abdominal muscle. Data for different tissues with different letters are significantly different from each other (P<0.05).

    View in gallery
  • Expression of Pc-p38 in muscle of Palaemon carinicauda Holthuis, 1950 at different post-moult times. *P<0.05, significant difference between inter-moult and post-moult individuals.

    View in gallery
  • Expression of Pc-p38 in muscle of Palaemon carinicauda Holthuis, 1950 after exposure to different concentrations of mercury. *P<0.05, **P<0.01, significant difference between test and control individuals, respectively.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 22 22 1
Full Text Views 7 7 7
PDF Downloads 2 2 2
EPUB Downloads 0 0 0