Calanoid copepods in central Chilean and Chilean Patagonian lakes (33-55°S, Chile), probable ecological key role in pelagic environments

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The Patagonian lakes (38-55°S) are characterized by their marked oligotrophy, low number of species of crustacean zooplankton, and a marked predominance of calanoid copepods. Within this context, we considered that a review about the ecology of the zooplankton in central and southern Chilean lakes would be useful, aiming to understand the ecological importance of this group. Data obtained from the literature for freshwater bodies in central and southern Chilean lakes were analysed. In addition, data from various bays with widely differing trophic status in Llanquihue Lake were examined. The results revealed the existence of originally pristine and oligotrophic sites, all with a low number of species and marked calanoid dominance. However, in northern Patagonia there are many lakes in which human intervention has caused an increase in phytoplankton activity, with a consequent replacement of calanoid copepods by daphniid cladocerans. Other important factors that could affect the zooplankton community would be fish predation, which is due to generate a decrease in large-bodied groups of zooplankton; and stress due to exposure to natural ultraviolet radiation. Ecological, biogeographical, and evolutionary topics are discussed within the framework described.

Crustaceana

International Journal of Crustacean Research

Sections

References

CamposH.SotoD.SteffenW.AgüeroG.ParraO.ZúñigaL., 1994a. Limnological studies in Lake del Toro, Chilean Patagonia. Arch. Hydrobiol., 99(Suppl. 1/2): 199-215.

CamposH.SotoD.SteffenW.AgüeroG.ParraO.ZúñigaL., 1994b. Limnological studies in Lake Sarmiento, a subsaline lake from Chilean Patagonia. Arch. Hydrobiol., 99(Suppl. 1/2): 217-234.

De los Rios-EscalanteP., 2010. Crustacean zooplankton communities in Chilean inland waters. Crust. Monogr., 12: 1-109.

De los Rios-EscalanteP., 2013. Crustacean zooplankton species richness in Chilean lakes and ponds (23°-51°S). Lat. Am. J. Aq. Res., 41: 600-605.

De los Rios-EscalanteP., 2015. Fish predation effects on body length of planktonic cladocerans and copepods in Chilean lakes. Crustaceana, 88: 1193-1199.

De los Ríos-EscalanteP., 2016. Null models for study rotifers and crustacean zooplankton species richness in Chilean Patagonian lakes. Act. Limnol. Brasiliensia, 28: e11.

De los Ríos-EscalanteP.SotoD.AcevedoP.Santander MassaR., 2017. Zooplankton communities in bays with different trophic status in Llanquihue lake (41°S, Chile). Brazilian J. Biol., 77: 469-475.

De los Ríos-EscalanteP.WoelflS., 2017. Use of null models to explain crustacean zooplankton assemblages in north Patagonian lakes with presence or absence of mixotrophic ciliates (38°S, Chile). Crustaceana, 90: 311-319.

De los RíosP.SotoD., 2005. Survival of two species of crustacean zooplankton under to two chlorophyll concentrations and protection or exposure to natural ultraviolet radiation. Crustaceana, 78: 163-169.

De los RíosP.SotoD., 2006. Effects of the availability of energetic and protective resources on the abundance of daphniids (Cladocera, Daphniidae) in Chilean Patagonian lakes (39°-51°S). Crustaceana, 79: 23-32.

De los RíosP.SotoD., 2007. Crustacean (Copepoda and Cladocera) species richness in Chilean Patagonian lakes. Crustaceana, 80: 285-296.

DodsonS. I.NewmanA. L.Will-WolfS.AlexanderM. L.WoodfordM. P.Van EgerenS., 2009. The relationship between zooplankton community structure and lake characteristics in temperate lakes (northern Wisconsin, USA). J. Plankt. Res., 31: 93-100.

EverittB. S.HothornT., 2016. A handbook of statistical analysis using R (1st ed.). https://cran.r-project.org/web/packages/HSAUR/HSAUR.pdf [visited 13 July 2016].

GilloolyJ. F.DodsonS. I., 2000. Latitudinal patterns in the size distribution and seasonal dynamics of New World freshwater cladocerans. Limnol. Ocean., 45: 25-30.

HoffmannM. D.DodsonS. I., 2005. Land use, primary productivity, and lake area as descriptors of zooplankton diversity. Ecology, 86: 225-261.

HylanderS.SouzaM. S.BalseiroE.ModenuttiB.HanssonL. A., 2012. Fish mediated trait compensation in zooplankton. Funct. Ecol., 26: 608-615.

JeppensenE.LauridsenT. L.MitchellS. F.BurnsC. W., 1997. Do zooplanktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand J. Mar. Freshwat. Res., 31: 163-173.

JeppensenE.LauridsenT. L.MitchellS. F.ChirstofferssenK.BurnsC. W., 2000. Trophic structure in the pelagial of 25 shallow New Zealand lakes: changes along nutrient and fish gradients. J. Plankt. Res., 22: 951-968.

KamjunkeN.VogtB.WölflS., 2009. Trophic interactions of the pelagic ciliate Stentor spp. in north Patagonian lakes. Limnologica, 39: 107-114.

MarinoneM. C.Menu MarqueS.Añón SuárezD.DiéguezM. C.PérezA. P.De los RíosP.SotoD.ZagareseH. E., 2006. UVR radiation as a potential driving force for zooplankton community structure in Patagonian lakes. Photochem. Photobiol., 82: 962-971.

Menu-MarqueS.MorroneJ. J.Locascio de MitrovichC., 2000. Distributional patterns of the South American species of Boeckella (Copepoda, Centropagidae): a track analysis. J. Crust. Biol., 20: 262-272.

ModenuttiB. E.BalseiroE. G.QueimaliñosC. P.Añón SuárezD. A.DieguezM. C.AlbariñoR. J., 1998. Structure and dynamics of food webs in Andean lakes. Lakes and Reserv. Res. Manag., 3: 179-189.

R Development Core Team, 2009. R: a language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria).

ReissigM.TrochineC.QueimaliñosC.BalseiroE.ModenuttiB., 2006. Impacts of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biol. Cons., 132: 437-447.

Schmid-ArayaJ. M.ZuñigaL. R., 1992. Zooplankton community structure in two Chilean reservoirs. Arch. Hydrobiol., 123: 305-325.

SotoD., 2002. Oligotrophic patterns in southern Chile lakes: the relevance of nutrients and mixing depth. Rev. Chilena Hist. Nat., 75: 377-393.

SotoD.De los RiosP., 2006. Trophic status and conductivity patterns as regulators in daphnids dominance and zooplankton assemblages in lakes and ponds of Torres del Paine National Park. Biologia Bratislava, 61: 541-546.

SotoD.ZuñigaL. R., 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Rev. Chilena Hist. Nat., 64: 569-581.

VillalobosL., 1999. Determinación de capacidad de carga y balance de fósforo y nitrógeno de los lagos Riesco, Los Palos, y Laguna Escondida en la XI región. Technical Report Fisheries Research Foundation — Chile, FIP-IT/97-39. [In Spanish.]

WoelflS., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep north Patagonian lakes (Chile): first results. Limnologica, 37: 28-36.

ZarJ. H., 1999. Biostatistical analysis: 1-165. (Prentice-Hall, Upper Saddle River, NJ).

Figures

  • Map with sites included in the present study. Left, lakes along the Chilean territory: 1, Peñueñas; 2, Runge; 3, Llanquihue; 4, Los Palos; 5, Escondida; 6, Riesco; 7, Del Toro; 8, Sarmiento; 9, Gemela Este; 10, Gemela Oeste. Right, sites in Llanquihue Lake: 11, Llanquihue town; 12, Puerto Chico; 13, Puerto Phillippi; 14, Puerto Rosales; 15, Ensenada; 16, Puerto Octay; 17, Volcanes Bay; 18, Venado beach. [Source: Google Earth, 2016.]

    View in gallery
  • Results of the PCA for variables studied that have been included in the present study. See text for further explanation.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 2 2 2
Full Text Views 2 2 2
PDF Downloads 1 1 1
EPUB Downloads 0 0 0