Cluster analyses of Ostracoda based on dimensions of body structures: implications for taxonomic classification

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

We measured selected podomeres, setae and claws in different ostracods and calculated the between-specimen morphological difference, which is expressed as a Canberra dissimilarity index. Our data indicate that morphological differences between ostracods increase with their taxonomic distance. Cluster analyses of ostracod specimens based on Canberra dissimilarity are able to discriminate different species and concur with existing classifications. We suggest that the dimensions of body structures are taxonomically valuable, and that ostracod species identification can be assisted based on the dimensional data of body structures. Species discrimination with such a method does not rely on explicit morphological hiatuses, such as the presence/absence of particular setae, but instead utilizes measurable morphological differences. Our numerical methods also show good potential for studying phenotypic diversity. Analyses on ostracod populations from isolated temporary pools and those from permanent but geographically distant habitats indicate that dispersal improbability is responsible for the observed morphological differentiation.

Crustaceana

International Journal of Crustacean Research

Sections

References

BairdW., 1843. Notes on the British Entomostraca. Zoologist, 1: 193-197.

BaltanásA.DanielopolD. L., 2011. Geometric Morphometrics and its use in ostracod research: a short guide. Joannea Geologie und Paläontologie, 11: 235-272.

BattishS. K., 1981. Freshwater Ostracoda of the subfamily Cyprinotinae from Punjab, India, with the description of eight new species. Journal of Natural History, 15: 645-669.

BradyG. S.RobertsonD., 1870. The Ostracoda and Foraminifera of tidal rivers, part 1. Annals and Magzine of Natural History, series 4, 6: 1-33.

BradyG. S.NormanA. M., 1889. A monograph of the marine and freshwater Ostracoda of the North Atlantic and of northwestern Europe. Section I: Podocopa. Scientific Transactions of the Royal Dublin Society, series 2, 4: 63-270.

BroodbakkerN. W.DanielopolD. L., 1982. The chaetotaxy of Cypridacea (Crustacea, Ostracoda) limbs: proposals for a descriptive model. Bijdragen tot de Dierkunde, 52: 103-120.

CliffordH. T.StephensonW., 1975. An introduction to numerical classification: 1-229. (Academic Press, New York).

CohenA. C.MartinJ. W.KornickerL. S., 1988. Homology of Holocene ostracode biramous appendages with those of other crustaceans: the protopod, epipod, exopod and endopod. Lethaia, 31: 251-265.

De DeckkerP.McKenzieK. G., 1981. Bennelongia, a new cyprididid ostracod genus from Australia. Transactions of the Royal Society of South Australia, 105: 53-58.

FischerS., 1851. Abhandlung über das Genus Cypris und dessen in der Umgebung von St. Petersburg und von Fall bei Reval vorkommenden Arten. Mémoires Presenté á l’Academie Imperiale des Sciences de St. Petersbourg, 7: 127-167.

HartwigW., 1900. Eine neue Candona aus der Provinz Brandenburg: Candona holzkampfi nov. spec. Sitz-Ber Ges Naturforsch Freunde Berl, 5: 149-152.

HigutiJ.MartensK., 2012. Description of a new genus and species of Candonopsini (Crustacea, Ostracoda, Candoninae) from the alluvial valley of the Upper Paraná River (Brazil, South America). European Journal of Taxonomy, 33: 1-31.

HigutiJ.SchönI.AudenaertL.MartensK., 2013. On the Strandesia obtusata/elliptica lineage (Ostracoda, Cyprididae) in the alluvial valley of the upper Paraná River (Brazil), with the description of three new species. Crustaceana, 86: 182-211.

HoskinC. J.HiggieM.McDonaldK. R.MoritzC., 2005. Reinforcement drives rapid allopatric speciation. Nature, 437: 1353-1356.

JärvekülgA., 1960. Ilyodromus estonicus n. sp., eine neue süsswasser-ostracode aus Estland. Eesti Nsv Teaduste Akadeemia Toimetised. Bioloogiline Seeria, 9: 27-34. (In Russian and German).

JurineL., 1820. Histoire des Monocles, qui se trouvent aux environs de Genève, I-XVI: 1-260.

KaeslerR. L., 1969. Numerical taxonomy of selected recent British Ostracoda. In: NealeJ. W. (ed.), Symposium on the taxonomy, morphology, and ecology of Recent Ostracoda: 21-47. (Oliver and Boyd, London).

KaranovicI., 2006. Recent Candoninae (Crustacea, Ostracoda, Candonidae) of North America. Records of the Western Australian Museum, Supplement, 71: 1-75.

KaranovicI., 2011. On the Recent Cyclocypridinae (Podocopida, Candonidae) with description of two new genera and one new species. Zootaxa, 2820: 1-61.

KaranovicI., 2012. Recent freshwater ostracods of the world: 1-608. (Springer, Berlin).

KaranovicI.LeeW., 2012. A review of candonid ostracods (Crustacea: Ostracoda: Podocopida) from East Asia, with descriptions of five new species from South Korea. Zootaxa, 3368: 7-49.

LanceG. N.WilliamsW. T., 1967a. Mixed-data classificatory programs. I. Agglomerative systems. Australian Computer Journal, 1: 15-20.

LanceG. N.WilliamsW. T., 1967b. A general theory of classificatory sorting strategies. I. Hierarchial systems. Computer Journal, 9: 373-380.

LanceG. N.WilliamsW. T., 1966. Computer programs for hierarchical polythetic classification (“similarity analyses”). Computer Journal, 9: 60-64.

MarmonierP.MeischC.DanielopolD. L., 1989. A review of the genus Cavernocypris Hartmann (Ostracoda, Cypridopsinae): systematics, ecology and biogeography. Bulletin de la Société des Naturalistes Luxembourgeois, 89: 221-278.

MartensK., 1987. Homology and functional morphology of the sexual dimorphism in the antenna of Sclerocypris Sars, 1924 (Crustacea, Ostracoda, Megalocypridinae). Bijdragen tot de Dierkunde, 57: 183-190.

MartensK., 1991. On a small collection of non-marine ostracods from Mongolia, with the description of a new species (Crustacea, Ostracoda). Miscellanea Zoologica Hungarica, 6: 53-60.

MartensK.SavatenalintonS., 2011. A subjective checklist of the Recent, free-living, non-marine Ostracoda (Crustacea). Zootaxa, 2855: 1-79.

MckenzieK. G., 1982. Homoeomorphy: persistent joker in the taxonomic pack, with the description of Bradleycypris gen. nov. In: BateR. H.RobinsonE.SheppardL. M. (eds.), Fossil and Recent ostracods: 407-438. (Ellis Horwood Ltd., Chichester).

MeischC., 2000. Freshwater Ostracoda of western and central Europe. In: SchwoerbelJ.ZwickP. (eds.), Süßwasserfauna von Mitteleuropa, 8: 1-522. (Spektrum Akademischer Verlag, Heidelberg).

MeischC., 2007. On the origin of the putative furca of the Ostracoda (Crustacea). Hydrobiologia, 585: 181-200.

MüllerG. W., 1903. Hamburgische Elbuntersuchungen — 3: Ostracoden. Mitteilungen aus dem Naturhistorischen Museum in Hamburg, 19: 163-167.

MüllerO. F., 1776. Zoologiae danicae prodromus, seu animalium daniae et norvegiae indigenarum characters, nomina, et synonyma imprimis popularium, I-XXXII: 1-282. (Typis Hallageriis).

NamiotkoT.DanielopolD. L., 2001. Redescription of two rare hypogean species of the genus Cryptocandona Kaufmann (Ostracoda). Crustaceana, 74: 557-580.

NamiotkoT.DanielopolD. L.RadaT., 2004. Pseudocandona sywulai sp. nov., a new stygobitic ostracode (Ostracoda, Candonidae) from Croatia. Crustaceana, 77: 311-331.

RamdohrF. A., 1808. Über die Gattung Cypris Müll. und drei zu derselben gehörige neue Arten. Magazin der Gesellschaft Naturforschender Freunde zu Berlin für die Neuesten Entdeckungen in der Gesammten Naturkunde, 2: 85-93.

SarsG. O., 1903. Freshwater Entomostraca from China and Sumatra. Archiv for Mathematik og Naturvidenskab, 25: 1-44.

SavatenalintonS., 2015. On three new species of non-marine ostracods (Crustacea: Ostracoda) from Northeast Thailand. Zootaxa, 3914: 275-300.

SchornikovE. I., 1973. Three new species of the Propontocypris genus from the Kuril Littoral. Vestuik Zoologii, 4: 54-60.

SmithR. J.KamiyaT., 2007. Copulatory behaviour and sexual morphology of three Fabaeformiscandona Krstić, 1972 (Candoninae, Ostracoda, Crustacea) species from Japan, including descriptions of two new species. Hydrobiologia, 585: 225-248.

SmithR. J.KamiyaT., 2015. Four new species of the subfamily Candoninae (Crustacea, Ostracoda) from freshwater habitats in Japan. European Journal of Taxonomy, 136: 1-34.

SmithR. J.Matzke-KaraszR.KamiyaT.IkedaY., 2002. Scottia birigida sp. nov. (Cypridoidea: Ostracoda) from western Honshu, Japan and a key to the subfamily Scottiinae Bronstein, 1947. Zootaxa, 126: 1-20.

SokalR. R.MichenerC. D., 1958. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38: 1409-1438.

StepanaitysN. E., 1960. New species of ostracods from the Neogene-Quaternary deposits of SW Turkmenia. Trudy Instituta Geologii Akademii Nauk Turkmenskoi SSR, 2: 298-315. (In Russian).

SywulaT., 1981. New taxa of Ostracoda (Crustacea) from Pomerania (north Poland). Bulletin de I’Académie Polonaise des Sciences, Sciences Biologiques, 28: 625-636.

TsukagoshiA.IkeyaN., 1991. A redescription of Cythere japonica Hanai, 1959 (Podocopida: Ostracoda). Zoological Journal of the Linnean Society, 103: 129-143.

VávraW., 1891. Monographie der Ostracoden Böhmens. Archiv der Naturwissensch. Landesdurchforschung von Böhmen, 8: 1-116.

VictorR.FernandoC. H., 1981. Ilyocypris dentifera Sars, 1903 versus Ilyocypris angulata Sars, 1903. A taxonomic study of two species of Ilyocypris Brady and Norman, 1889 (Crustacea, Ostracoda) described from China. Canadian Journal of Zoology, 59: 1103-1110.

YinY.GeigerW.MartensK., 1999. Effects of genotype and environment on phenotypic variability in Limnocythere inopinata (Crustacea: Ostracoda). Hydrobiologia, 400: 85-114.

ZhaiD. Y.XiaoJ. L., 2013. On a new species of the genus Ilyocypris Brady & Norman, 1889 from Hulun Lake, China. Naturalista siciliano, series IV, 37: 465-469.

ZhaiD. Y.ZhaoW. H., 2014. On some Recent non-marine ostracods from northern China, with description of one new species. Crustaceana, 87: 985-1026.

Figures

  • Map showing the 56 sampling sites from China, Japan, Korea, Germany and Italy. Grey lines indicate provinces on mainland China. CG, a freshwater stream on Mount Cheonggye, is the type locality of Candona quasiakaina Karanovic & Lee, 2012. SP, Kanazawa, is the type locality of Fabaeformiscandona myllaina Smith & Kamiya, 2007. Morphological measurements of the above holotypes were made from the line drawings of the original description. The other sites were sampled by the present authors.

    View in gallery
  • Soft-part structures of Cypridoidea ostracods measured in this study. The measurements on the L7 are illustrated for taxa with a pincer structure (e.g., family Cyprididae) and for taxa without a pincer structure. Some irrelevant structures are not illustrated. Not to scale.

    View in gallery
  • Soft-part structures of Cytheroidea ostracods measured in this study. Some irrelevant structures are not illustrated. Not to scale.

    View in gallery
  • Cluster analysis of 24 Heterocypris incongruens (Ramdohr, 1808) specimens and four Cyprinotinae sp. specimens, based on Canberra morphological dissimilarity calculated from the lengths of soft-part structures. For the locations of the sampling sites see fig. 1. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Cluster analysis of 26 Cypridopsinae specimens (19 Cypridopsis vidua (O. F. Müller, 1776), four Plesiocypridopsis newtoni (Brady & Robertson, 1870) and three Potamocypris variegate (Brady & Norman, 1889)), based on Canberra morphological dissimilarity calculated from the lengths of soft-part structures. For the locations of the sampling sites see fig. 1. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Cluster analysis of 26 Limnocythere inopinata (Baird, 1843) specimens and eight L. stationis (Vávra, 1891) specimens, based on Canberra morphological dissimilarity calculated from the lengths of soft-part structures. For the locations of the sampling sites see fig. 1. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Cluster analysis of 11 Bradleycypris vittata (Sars, 1903) specimens and four Bradleystrandesia sp. specimens, based on Canberra morphological dissimilarity calculated from the lengths of soft-part structures. For the locations of the sampling sites see fig. 1. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Cluster analysis of 31 Cyclocypridinae specimens (20 Physocypria kraepelini G. W. Müller, 1903, five C. ophtalmica (Jurine, 1820) and six Cyclocypris sp.), based on Canberra morphological dissimilarity calculated from the lengths of soft-part structures. For the locations of the sampling sites see fig. 1. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Cluster analysis of 45 Candoninae specimens (11 Candona quasiakaina Karanovi & Lee, 2012, four Fabaeformiscandona alexandri (Sywula, 1981), two F. holzkampfi (Hartwig, 1900), ten F. subacuta (Yang, 1982), three F. myllaina Smith & Kamiya, 2007, two F. tora Smith & Kamiya, 2007, three Fabaeformiscandona sp., two Pseudocandona sp.1, six Pseudocandona sp.2 and two Candonopsis sp.), based on Canberra morphological dissimilarity calculated from the lengths of soft-part structures. For the locations of the sampling sites see fig. 1. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Cluster analysis of 60 Ilyocypris specimens (43 Ilyocypris mongolica Martens, 1991, seven I. salebrosa Stepanaitys, 1960, four I. innermongolica Zhai & Chao, 2013, four I. angulata Sars, 1903 and two Ilyocypris sp.), based on Canberra morphological dissimilarity calculated from the lengths of soft-part structures. For the locations of the sampling sites see fig. 1. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Cluster analysis of 19 Eucypridinae specimens (six Eucypris pigra (Fischer, 1851), seven Tonnacypris estonica (Järvekülg, 1960) and six Tonnacypris sp.), based on Canberra morphological dissimilarity (note the varying scale) calculated from the lengths of soft-part structures. For the locations of the sampling sites see fig. 1. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Canberra morphological dissimilarity between ostracod specimens at different taxonomic distances. Green: conspecific specimens. Blue: congeneric specimens from different species. Purple: specimens from the same subfamily but from different genera. Orange: specimens from the same family but from different subfamilies. Each plot represents the mean Canberra dissimilarity value and its 95% confidence range. For explanations of the abbreviations of the species names see table I. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Lengths of 11 soft-part structures of the specimens of Limnocythere inopinata (Baird, 1843) and L. stationis Vávra, 1891, expressed as percentage ratios to valve length. For explanations of the abbreviations of soft-part structures see fig. 3 and table III. For the locations of the sampling sites see fig. 1. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery
  • Lengths of 23 soft-part structures of the specimens of 20 Cypridoidea species, expressed as percentage ratios to valve length. For explanations of the abbreviations of soft-part structures see fig. 2 and table II. For explanations of the abbreviations of the species names see table I. This figure is published in colour in the online edition of this journal, which can be accessed via http://booksandjournals.brillonline.com/content/journals/15685403.

    View in gallery

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 20 20 8
Full Text Views 3 3 3
PDF Downloads 0 0 0
EPUB Downloads 0 0 0