Notodiaptomus incompositus (Brian, 1925) (Copepoda, Calanoida) reared in the laboratory: growth experiments and reproductive aspects

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The calanoid copepod Notodiaptomus incompositus (Brian, 1925) is an important contributor in limnic environments in Southern South America, where it can attain high densities and contribute significantly to the total zooplankton biomass in water bodies in Argentina, Uruguay and Brazil. However, little is known about the reproductive biology of this species. In the present study, biological aspects like developmental time, egg production and growth rate were assessed through cultures in the laboratory where copepods were fed Chlamydomonas cf. pumilioniformis (Chlamydophyceae) cultured in WC medium. The average time of egg incubation was 51 h at 20°C and the mean development time from nauplii to adult was 14 days. The carbon weights of N. incompositus eggs and females were 0.08 and 2.38 μg C, respectively. The growth rates of all copepodite stages were determined and ranged between 0.073 and 0.447 day−1. This study revealed interesting reproductive aspects of the copepod N. incompositus, generating information that will be of great relevance for future studies with this species.

Notodiaptomus incompositus (Brian, 1925) (Copepoda, Calanoida) reared in the laboratory: growth experiments and reproductive aspects

in Crustaceana



BrandorffG.1976. The geographic distribution of the Diaptomidae in South America (Crustacea, Copepoda). Rev. Bras. Biol.36: 613-627.

BrianA.1925. Di alcuni copepodi d’acqua dolce dell’Argentina. Mem. Soc. Entomol. Ital.4: 177-200.

CalliariD.BorgM. C. A.ThorP.GorokhovaE.TiseliusP.2008. Instantaneous salinity reductions affect the survival and feeding rates of the co-occurring copepods Acartia tonsa Dana and A. clause Giesbrecht differently. J. Exp. Mar. Biol. Ecol.362: 18-25.

ChinneryF. E.WilliamsJ. A.2004. The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar. Biol.145: 733-738.

ChisholmL. A.RoffJ. C.1990. Abundances, growth rates, and production of tropical neritic copepods off Kingston, Jamaica. Mar. Biol.106: 79-89.

DevrekerD.SouissiS.Forget-LerayJ.LeboulengerF.2007. Effects of salinity and temperature on the post-embryonic development of Eurytemora affinis (Copepoda; Calanoida) from the Seine Estuary: a laboratory study. J. Plankton Res.29: 1117-1133.

DowningJ. A.1984. Assessment of secondary production: the first step. In: DowningJ. A.RiglerF. H. (eds.) A manual on methods for the assessment of secondary productivity in fresh waters: 1-18. (BlackwellLondon).

DurenL. A.VidelerJ. J.1996. The trade-off between feeding, mate seeking and predator avoidance in copepods: behavioural responses to chemical cues. J. Plankton Res.18: 805-818.

EscribanoR.RodriguezL.IrribarrenC.1998. Temperature-dependent development and growth of Calanus chilensis Brodsky from Northern Chile. J. Exp. Mar. Biol. Ecol.229: 19-34.

EscribanoR.SabatiniM.HidalgoP.2009. Crecimiento, desarollo, fecundidad y producción en el mesozooplâncton. In: AlderV. A.MoralesC. E. (eds.) Manual de métodos para el estudio de sistemas planctônicos marinos: 227-246. (EudebaBuenos Aires).

EspíndolaE. L. G.1994. Dinâmica da associação congenérica das espécies de Notodiaptomus (Copepoda Calanoida) no reservatório de Barra Bonita São Paulo. (PhD thesis University of São Paulo São Paulo).

FahrenbachW. H.1964. The fine structure of a nauplius eye. Z. Zellforsch. Mikrosk. Anat.62: 182-197.

GillC. W.1986. Suspected mechano- and chemosensory structures of Temora longicornis (Copepoda: Calanoida). Mar. Biol.93: 449-457.

GolezM. S. N.TakahashiT.IshimaruT.OhnoA.2004. Post-embryonic development and reproduction of Pseudodiaptomus annandalei (Copepoda: Calanoida). Plankton Biol. Ecol.51: 15-25.

GriffithsA. M.FrostB. W.1976. Chemical communication in the marine planktonic copepods Calanus pacificus and Pseudocalanus sp. Crustaceana30: 1-8.

GuillardR. R. L.LorenzenC. J.1972. Yellow-green algae with chlorophyllide c. J. Phycol.8: 10-14.

HirstA. G.BunkerA. J.2003. Growth of marine planktonic copepods: global rates and patterns in relation to chlorophyll a, temperature, and body weight. Limnol. Oceanogr.48: 1988-2010.

HopcroftR. R.RoffJ. C.1998. Zooplankton growth rates: the influence of female size and resources on egg production of tropical marine copepodites. Mar. Biol.132: 79-86.

HuntleyM. E.LopezM. D. G.1992. Temperature-dependent production of marine copepods: a global synthesis. Am. Nat.140: 201-242.

IanoraA.Scotto Di CarloB.MascellaroP.1989. Reproductive biology of the planktonic copepod Temora stylifera. Mar. Biol.101: 187-194.

IanoraS.PouletS. A.MiraltoA.GrottoliR.1996. The diatom Thalassiosira rotula affects reproductive success in the copepod Acartia clausi. Mar. Biol.125: 279-286.

JacobsJ.1961. Laboratory cultivation of the marine copepod Pseudodiaptomus coronatus Williams. Limnol. Oceanogr.6: 443-446.

JacobyC. A.YoungbluthM. J.1983. Mating behavior in three species of Pseudodiaptomus (Copepoda: Calanoida). Mar. Biol.76: 77-86.

JerlingH. L.WooldridgeT. H.1991. Population dynamics and estimates of production for the calanoid copepod Pseudodiaptomus hessei in a warm temperate estuary. Estuar. Coast. Shelf S.33: 121-135.

KaminskiS. M.2009. Mesozooplâncton do Estuário da Lagos dos Patos e zona costeira adjacente com ênfase para os copépodos Acartia tonsa Pseudodiaptomus richardi e Notodiaptomus incompositus (2000-2005). (PhD thesis Federal University of Rio Grande Porto Alegre).

KaminskiS. M.BersanoJ. G. F.AmaralW. J. A.2009. Efeitos da salinidade e dieta alimentar sobre os copépodes Pseudodiaptomus richardi e Notodiaptomus incompositus em estudos de laboratório. Braz. J. Aquat. Sci. Technol.13: 25-36.

KatonaS. K.1970. Growth characteristics of the copepods Eurytemora affinis and E. herdmani in laboratory cultures. Helgol. Wiss. Meeresunters.20: 373-384.

KatonaS. K.1975. Copulation in the copepod Eurytemora affinis (Poppe, 1880). Crustaceana28: 89-95.

KimmererW. J.1987. The theory of secondary production calculations for continuously reproducing populations. Limnol. Oceanogr.32: 1-13.

KiørboeT.2007. Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: there are too few males. Limnol. Oceanogr.52: 1511-1522.

KiørboeT.MohlenbergF.HamburgerK.1985. Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Mar. Ecol. Prog. Ser.26: 85-97.

KiørboeT.SabatiniM.1994. Reproductive and life cycle strategies in egg-carrying cyclopoid and free-spawning calanoid copepods. J. Plankton Res.16: 1353-1366.

KiørboeT.SabatiniM.1995. Scaling of fecundity, growth and development in marine planktonic copepods. Mar. Ecol. Prog. Ser.120: 285-298.

Klein BretelerW. C. M.FranszH. G.GonzalezS. R.1982. Growth and development of four calanoid copepod species under experimental and natural conditions. Netherlands J. Sea Res.16: 195-207.

LandryM. R.1983. The development of marine copepods with comment on the isochronal rule. Limnol. Oceanogr.28: 614-624.

LeandroS. M.QueirogaH.Rodríguez-GrañaL.TiseliusP.2006a. Temperature-dependent development and somatic growth in two allopatric populations of Acartia clausi (Copepoda: Calanoida). Mar. Ecol. Prog. Ser.322: 189-197.

LeandroS. M.TiseliusP.QueirogaH.2006b. Growth and development of nauplii and copepodites of the estuarine copepod Acartia tonsa from southern Europe (Ria de Aveiro, Portugal) under saturating food conditions. Mar. Biol.150: 121-129.

LiangD.UyeS.1997. Seasonal reproductive biology of the egg-carrying calanoid copepod Pseudodiaptomus marinus in a eutrophic inlet of the Inland Sea of Japan. Mar. Biol.128: 409-414.

MarshallS. M.OrrA. P.1952. On the biology of Calanus finmarchicus. VII. Factors affecting egg production. J. Mar. Biol. Ass. U.K.30: 527-547.

MauchlineJ.1998. The biology of calanoid copepods: advances in marine biology. (Academic PressLondon).

McLarenI. A.1978. Generation lengths of some temperate marine copepods: estimation, prediction, and implications. J. Fish. Res. Board Can.35: 1330-1342.

Melo JúniorM.2009. Produção secundária e aspectos reprodutivos de copépodes pelágicos ao largo de Ubatuba (SP Brasil). (PhD thesis University of São Paulo São Paulo).

MillerC. B.JohnsonJ. K.HeinleD. R.1977. Growth rules in the marine copepod genus Acartia. Limnol. Oceanogr.22: 326-335.

MontúM.1980. Zooplâncton do Estuário da Lagoa dos Patos I-Estrutura e Variações Temporais e Espaciais da Comunidade. Atlântica4: 53-72.

MontúM.GloedenI. M.1986. Atlas dos Cladocera e Copepoda (Crustacea) do Estuário da Lagoa dos Patos (Rio Grande, Brasil). Nerítica1: 1-134.

MuxagataE.AmaralW. J. A.BarbosaC. A.2012. Acartia tonsa in the Patos Lagoon estuary, Brazil. ICES J. Mar. Sci.69: 475-482.

OmoriM.IkedaT.1992. Methods in marine zooplankton ecology. (KriegerMalabar, FL).

PaffenhöferG. A.1993. On the ecology of marine cyclopoid copepods (Crustacea, Copepoda). J. Plankton Res.15: 37-55.

ParrishK. K.WilsonD. F.1978. Fecundity studies on Acartia tonsa (Copepoda: Calanoida) in standardized culture. Mar. Biol.46: 65-81.

PayneM. F.RippingaleR. J.2001. Effects of salinity, cold storage and enrichment on the calanoid copepod Gladioferens imparipes. Aquaculture201: 251-262.

PetersonW. T.1986. Development, growth and survivorship of the copepod in the laboratory. Mar. Ecol. Prog. Ser.29: 1-12.

PetersonW. T.2001. Patterns in stage duration and development among marine and freshwater calanoid and cyclopoid copepods: a review of rules, physiological constraints, and evolutionary significance. Hydrobiologia453/454: 91-105.

RiglerF. H.DowningJ. A.1984. The calculation of secondary productivity. In: DowningJ. A.RiglerF. H. (eds.) A manual on methods for the assessment of secondary productivity in fresh waters: 19-58. (BlackwellLondon).

Rodríguez-GrañaL.CalliariD.TiseliusP.HansenB. W.SköldH. N.2010. Gender-specific ageing and non-mendelian inheritance of oxidative damage in marine copepods. Mar. Ecol. Prog. Ser.401: 1-13.

RungeJ. A.1984. Egg production of the marine, planktonic copepod, Calanus pacificus Brodsky: laboratory observations. J. Exp. Mar. Biol. Ecol.74: 53-66.

RungeJ. A.RoffJ. C.2000. The measurement of growth and reproductive rates. In: HarrisR.WiebeP.LenzJ.SkjoldalH. R.HuntleyM. (eds.) ICES zooplankton methodology manual: 401-454. (Academic PressLondon).

SabatiniM.KiørboeT.1994. Egg production, growth and development of the cyclopoid copepod Oithona similis. J. Plankton Res.16: 1329-1351.

ThompsonB. M.1982. Growth and development of Pseudocalanus elongatus and Calanus sp. in the laboratory. J. Mar. Biol. Ass. U.K.62: 359-372.

UchimaM.MuranoM.1988. Mating behavior of the marine copepod Oithona davisae. Mar. Biol.99: 39-45.

UyeS.1981. Fecundity studies of neritic calanoid copepods Acartia clausi Giesbrecht and A. steueri Smirnov: a simple empirical model of daily egg production. J. Exp. Mar. Biol. Ecol.50: 255-271.

UyeS.IwaiY.KasaharaS.1983. Growth and production of the inshore marine copepod Pseudodiaptomus marinus in the central part of the Inland Sea of Japan. Mar. Biol.73: 91-98.

UyeS.SanoK.1998. Seasonal variations in biomass, growth rate and production rate of the small cyclopoid copepod Oithona davisae in a temperate eutrophic inlet. Mar. Ecol. Prog. Ser.163: 37-44.

VidalJ.1980. Physioecology of zooplankton. II. Effects of phytoplankton concentration, temperature, and body size on the development and molting rates of Calanus pacificus and Pseudocalanus sp. Mar. Biol.56: 135-146.

WatrasC. J.1983. Mate location by diaptomid copepods. J. Plankton Res.5: 417-423.

WilsonD. F.ParrishK. K.1971. Remating in a planktonic marine calanoid copepod. Mar. Biol.9: 202-204.


  • View in gallery

    Study area showing the sampling site at the Channel of Patos Lagoon Estuary. The countries where Notodiaptomus incompositus (Brian, 1925) occurs are highlighted.

  • View in gallery

    Percentage of Notodiaptomus incompositus (Brian, 1925) developmental stages during culture at 20°C. Until the fourth day only nauplii were found. Copepodites were observed from the fifth day. The culture took 14 days until more than half of the individuals were already adults.

  • View in gallery

    Linear regression between prosome length of copepodites and days of culture (age) for Notodiaptomus incompositus (Brian, 1925) cultured in the laboratory.

  • View in gallery

    Average egg production of Notodiaptomus incompositus (Brian, 1925) in the presence (A) and absence (B) of males during 216 h incubation. C shows the average egg production with the introduction of male after 96 h of experiment. The filled square denotes the first egg sac produced and the filled circles are the first nauplii that hatched from it. The filled triangle denotes the second egg sac and the empty square the second nauplii that hatched from it. The empty circle denotes the third egg sac and the empty triangle the third nauplii hatched.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 22 22 6
Full Text Views 5 5 5
PDF Downloads 0 0 0
EPUB Downloads 0 0 0