Vertical distribution of calanoid copepods in a mature cyclonic eddy in the Gulf of California

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The distribution of calanoid copepod habitats in a cyclonic eddy in the Gulf of California was examined. Direct velocity observations revealed that the eddy extended to approximately 550 m depth and 150 km diameter. The established thermocline suggested that active vertical pumping was not occurring because the eddy was in mature phase. A copepod habitat located in the surface mixed layer, showed high abundances, dominated by Subeucalanus subtenuis (Giesbrecht, 1888), whose abundances decrease towards the centre of the eddy. A second habitat, situated in thermocline, had the highest abundances dominated by Nannocalanus minor (Claus, 1863) and Temora discaudata Giesbrecht, 1889. Another habitat, beneath the thermocline, was dominated by most of species recorded in thermocline, but with the lowest abundance. Results suggest that in the mature phase of a cyclonic eddy, the water column stratification induces layering of the calanoid copepod habitats, with the most propitious conditions for their feeding in thermocline.

Vertical distribution of calanoid copepods in a mature cyclonic eddy in the Gulf of California

in Crustaceana



AshjianC. J.WishnerK. F.1993. Temporal persistence of copepod species groups in the Gulf Stream. Deep-Sea Res. I40: 483-516.

AtwoodE. J.Duffy-AndersonT.HorneJ. K.LaddC.2010. Influence of mesoscale eddies on ichthyoplankton assemblages in the Gulf of Alaska. Fish. Oceanogr.19: 493-507. DOI:10.1111/j.1365-2419.2010.00559.x.

BakunA.1996. Patterns in the ocean: ocean processes and marine population dynamics. (University of California Sea GrantSan Diego, CAin cooperation with Centro de Investigaciones Biológicas de Noroeste La Paz Baja California Sur).

BakunA.2006. Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptative response and competitive advantage. Sci. Mar.70S2: 105-122.

BattenS. D.CrawfordW. R.2005. The influence of coastal origin eddies on oceanic plankton distributions in the eastern Gulf of Alaska. Deep-Sea Res. II52: 991-1009. DOI:10.1016/j.dsr2.2005.02.009.

BaumgartnerM.TarrantA. M.2017. The physiology and ecology of diapause in marine copepods. Annu. Rev. Sci9: 16.1-16.25.

BeaugrandG.IbanezF.2004. Monitoring marine plankton ecosystems. II: long-term changes in North Sea calanoid copepods in relation to hydro-climatic variability. Mar. Ecol. Prog. Ser.284: 35-47. DOI:10.3354/meps284035.

BeierE.1997. A numerical investigation of the annual variability in the Gulf of California. J. Phys. Oceanogr.27: 615-632. DOI:10.1175/1520-0485(1997)027<0615:ANIOTA>2.0.CO;2.

BrayJ. R.CurtisJ. T.1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr.27: 325-349.

BrintoE.FlemingerA.Siegel-CauseyD.1986. The temperate and tropical planktonic biotas of the Gulf of California. Calif. Coop. Oceanic Fish. Invest. Rep.27: 228-266.

ClarkeG. L.1934. Factors affecting the vertical distribution of copepods. Ecol. Monogr.4: 530-540.

ClarkeK. R.AinsworthM.1993. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser.92: 205-219.

CummingsJ. A.1984. Habitat dimensions of calanoid copepods in the western Gulf of Mexico. J. Mar. Res.42: 163-188. DOI:10.1357/002224084788506121.

DoyleM. J.MorseW. W.KendallA. W.1993. A comparison of larval fish assemblages in the temperate zone of the northeast Pacific and northwest Atlantic Oceans. Bull. Mar. Sci.53: 588-644.

FieldJ. G.ClarkeK. R.WarwickR. M.1982. A practical strategy for analyzing multispecies distribution patterns. Mar. Ecol. Prog. Ser.8: 37-52.

FlemingerA.1975. Geographical distribution and morphological divergence in American coastal-zone planktonic copepods of the genus Labidocera. Estuar. Res.I: 392-419.

GodínezV. M.LavínM. F.Sánchez-VelascoL.Hernández-BecerrilD. U.Cabrera-RamosC. E.2011. Datos Hidrográficos en el Golfo de California: Campaña GOLCA-1107 (27 de julio al 4 de agosto del 2011). Informe técnico 102304. Departamento de Oceanografía Física CICESE. Available online at

GriffithsF. B.WadleyV. A.1986. A synoptic comparison of fishes and crustaceans from a warm-core eddy, the east Australian current, the Coral Sea and the Tasman Sea. Deep-Sea Res. I33: 1907-1922. DOI:10.1016/0198-0149(86)90085-3.

HauryL. R.SimpsonJ. J.PelaezJ.KoblinskyC.WiesenhamK.1986. Biological consequences of a recurrent eddy off point conception, California. J. Geophys. Res.91: 12937-12956.

HofmannF.PeltzerE. T.BrewerP. G.2012. Kinetic bottlenecks to chemical exchange rates for deep-sea animals — part 1: oxygen. Biogeosciences10: 2409-2425. DOI:10.5194/bg-10-2409-2013.

IlesT. D.SinclairM.1982. Atlantic herring: stock discreteness and abundance. Science215: 627-633. DOI:10.1126/science.215.4533.627.

IOC SCOR IAPSO2010. The international thermodynamic equation of seawater — 2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission Manuals and Guides No. 56. (UNESCO Geneva).

Jiménez-PérezL. C.Lara-LaraJ. R.1988. Zooplankton biomass and copepod community structure in the Gulf of California during the 1982-1983 El Niño event. Calif. Coop. Oceanic Fish. Invest. Rep.29: 122-128.

KaraA. B.RochfordP. A.HurlburtH. E.2000. An optimal definition for ocean mixed layer depth. J. Geophys. Res.105: 16803. DOI:10.1029/2000JC900072.

KozakE. R.Franco-GordoC.Suárez-MoralesE.Palomares-GarcíaR.2014. Seasonal and interannual variability of the calanoid copepod community structure in shelf waters of the eastern tropical Pacific. Mar. Ecol. Prog. Ser.507: 95-110. DOI:10.3354/meps10811.

KramerD.KalinM. J.StevensE. G.ThrailkillJ. R.ZweifelJ. R.1972. Collection and processing data on fish eggs and larvae in the California current region: 1-38. NOAA Tech. rep. NMFS CIRC-370.

LavínM. F.CastroR.BeierE.CabreraC.GodínezV. M.Amador-BuenrostroA.2014. Surface circulation in the Gulf of California in summer from surface drifters and satellite images (2004-2006). J. Geophys. Res. Ocean.119: 4278-4290. DOI:10.1002/2013JC009345.

LavínM. F.CastroR.BeierE.GodínezV. M.2013. Mesoscale eddies in the southern Gulf of California during summer: characteristics and interaction with the wind stress. J. Geophys. Res. Ocean.118: 1-15. DOI:10.1002/jgrc.20132.

LavínM. F.MarinoneS. G.2003. An overview of the physical oceanography of the Gulf of California. In: Velasco FuentesO. U.SheinbaumJ.Ochoa de la TorreJ. L. (eds.) Nonlinear processes in geophys. Fluid Dynamics: 173-204. (Kluwer AcademicDordrecht).

LonghurstA. R.1985. Relationship between diversity and the vertical structure of the upper ocean. Deep-Sea Res. I32: 1535-1570.

López-SalgadoI.GascaR.Suárez-MoralesE.2000. La comunidad de copépodos (Crustacea) en los giros a mesoescala en el occidente del Golfo de México (Julio, 1995). Rev. Biol. Trop.48: 169-179.

LudwigJ. A.ReynoldsJ. F.1988. Statistical ecology: 189-202. (WileyChichcester).

MackasD. L.CoyleK. O.2005. Shelf-offshore exchange processes, and their effects on mesozooplankton biomass and community composition patterns in the northeast Pacific. Deep-Sea Res. II52: 707-725. DOI:10.1016/j.dsr2.2004.12.020.

MackasD. L.GalbraithM.2002. Zooplankton distribution and dynamics in a north Pacific eddy of coastal origin. I. Transport and loss of continental margin species. J. Oceanogr.58: 725-738.

MahadevanA.ThomasL. N.TandonA.2008. Comment on “Eddy/Wind interactions stimulate extraordinary mid-ocean plankton blooms”. Science320: 448b. DOI:10.1126/science.1152111.

McGillicuddyD. J.AndersonL. A.BatesN. R.BibbyT.BuesselerK. O.CarlsonC. A.DavisC. S.EwartC.FalkowskiP. G.GoldthwaitS. A.HansellD. A.JenkinsW. J.JohnsonR.KosnyrevV. K.LedwellJ. R.LiQ. P.SiegelD. A.SteinbergD. K.2007. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. Science316: 1021-1026. DOI:10.1126/science.1136256.

MoserH. G.SmithP. E.1993. Larval fish assemblages of the California current region and their horizontal and vertical distributions across a front. Bull. Mar. Sci.53: 645-691.

Palomares-GarcíaR.Suárez-MoralesE.Hernández-TrujilloS.1998. Catálogo de los copépodos (Crustacea) pelágicos del Pacífico Mexicano. (CicimarEcosur).

Palomares-GarcíaR. J.Gómez-GutiérrezJ.RobinsonC. J.2013. Winter and summer vertical distribution of epipelagic copepods in the Gulf of California. J. Plankton Res.35: 1009-1026. DOI:10.1093/plankt/fbt052.

PawlowiczR.WrightD. G.MilleroF. J.2010. The effects of biogeochemical processes on oceanic conductivity/salinity/density relationships and the characterization of real seawater. Ocean Sci. Discuss.7: 773-836.

Sánchez-VelascoL.BeierE.GodínezV. M.BartonE. D.Santamaría-Del-AngelE.Jímenes-RosembergS. P. A.MarinoneS. G.2017. Hydrographyc and larvae distribution during the “Godzilla El Niño 2015-2016” in the northern end of shallow oxygen minimum zone of the eastern tropical Pacific Ocean. J. Geophys. Res. Ocean.122. DOI:10.1002/2016JC012622.

Sánchez-VelascoL.LavínM. F.Jiménez-RosenbergS. P. A.GodínezV. M.Santamaría-Del-AngelE.Hernández-BecerrilD. U.2013. Three-dimensional distribution of fish larvae in a cyclonic eddy in the Gulf of California during the summer. Dee-Sea Res. I75: 39-51. DOI:10.1016/j.dsr.2013.01.009.

Sánchez-VelascoL.LavínM. F.Peguero-IcazaM.León-ChávezC. A.Contreras-CatalaF.MarinoneS. G.Gutiérrez-PalaciosI. V.GodínezV. M.2009. Seasonal changes in larval fish assemblages in a semi-enclosed sea (Gulf of California). Cont. Shelf Res.29: 1697-1710. DOI:10.1016/j.csr.2009.06.001.

SangràP.PascualA.Rodríguez-SantanaÁ.MachínF.MasonE.McwilliamsJ. C.PelegríJ. L.DongC.RubioA.ArísteguiJ.Marrero-DíazÁ.Hernández-GuerraA.Martínez-MarreroA.AuladellM.2009. The canary eddy corridor: a major pathway for long-lived eddies in the subtropical north Atlantic. Deep-Sea Res. I56: 2100-2114. DOI:10.1016/j.dsr.2009.08.008.

SiegelS.CastellónN. J.1988. Non-parametric statistics for the behavioral sciences. (McGraw-HillNew York, NY).

SmithP. E.RichardsonS. L.1979. Técnicas modelo para prospecciones de huevos y larvas de peces pelágicos. FAO. Doc. Tec. Pesca.175: 1-107.

SokalR. R.RohlfF. J.1985. Biometry. (BlumeBarcelona).

SokalR. R.SneathP. H.1963. Principles of numerical taxonomy. (FreemanSan Francisco, CA).

Ter BraakC. J. F.1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology67: 1167-1179.

VisbeckM.2002. Deep velocity profiling using lowered acoustic Doppler current profilers: bottom track and inverse solutions. J. Atmos. Ocean. Technol.19: 794-807.

WiebeP.1976. The biology of cold-core rings. Oceanus19: 69-76.


  • View in gallery

    Aqua/MODIS chlorophyll a satellite image and sampling stations (26 July to 6 August 2011). Red circles indicate CTD data and biological samples.

  • View in gallery

    LADCP velocities (cm·s−1) normal to the eddy transect in the southern Gulf of California. The yellow colour indicates positive velocities and the blue colour negative velocities.

  • View in gallery

    Vertical distribution of hydrographic conditions along the eddy transect in the southern Gulf of California: A, conservative temperature (θ, °C), the heavy red curve marks surface mixed layer depth, and the blue curve is mixed layer depth; B, chlorophyll a (mg·m−3) with “Surface mixed habitat” (blue circles); C, absolute salinity (SA, g·kg−1) with Thermocline habitat (red circles); D, dissolved oxygen (μmol·kg−1), with Hypoxic habitat (black circles).

  • View in gallery

    Dendrogram of calanoid copepod samples defined by the Bray-Curtis dissimilarity Index and the flexible agglomerative methods from copepod data collected in the eddy transect in the southern Gulf of California.

  • View in gallery

    Vertical distribution of the mean abundance of dominant calanoid copepod species from copepod data collected in the eddy transect in the southern Gulf of California. The mean depth of upper and lower limits of the thermocline are represented by black dashed lines.

  • View in gallery

    Canonical Correspondence Analysis (CCA) results showing copepod habitats in relation to hydrographic conditions in the eddy transect during July 2011. The three habitats are Surface mixed habitat (blue circles), Thermocline habitat (red circles) and Hypoxic habitat (black circles). Copepod habitat centroids (green stars) and environmental data (arrows); first axis is horizontal and second axis vertical.

  • View in gallery

    Vertical distribution of hydrographic conditions in the coastal stations in the southern Gulf of California: A, conservative temperature (θ,°C), the heavy red curve marks surface mixed layer depth, the blue curve is mixed layer depth, and black circles mark abundance of calanoid copepods; B, chlorophyll a (mg·m−3); C, absolute salinity (SA, g·kg−1); D, dissolved oxygen (μmol·kg−1).

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 10 10 7
Full Text Views 4 4 4
PDF Downloads 2 2 2
EPUB Downloads 0 0 0