First description of epizoic ciliates (Sessilida Stein, 1933) on Bathyporeia Lindström, 1855 (Peracarida, Amphipoda) and infestation patterns in brackish and marine waters

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

During a re-examination of macrozoobenthic samples from a long-term monitoring programme in the Dutch Oosterschelde and Westerschelde, the abundant presence of peritrich ciliates on specimens of Bathyporeia Lindström, 1855, was discovered. Out of the more than 3500 Bathyporeia specimens investigated, 44% contained ciliates. Although Bathyporeia sarsi Watkin, 1938 was significantly more often infested than Bathyporeia pilosa Lindström, 1855, these differences in infestation rates were largely due to differences between water bodies with higher infestation rates in the polyhaline than in the mesohaline reach. Observation of additionally collected living specimens and freshly preserved material showed that at least two, and likely three, species of ciliates are present of which two might be undescribed so far. One of the observed species matches Zoothamnium nanum Kahl, 1933. A second species belongs to the genus Epistylis Ehrenberg, 1830, but does not seem to match a so far known species. This also accounts for a possible third species belonging to the genus Zoothamnium Bory de St. Vincent, 1826, deviating from Z. nanum amongst others in the habitus of the stalk. The front part of Bathyporeia spp. and the antennae in particular, significantly more often harboured ciliates than the remainder of the body, where additional ciliates were only found on the ventral side. This shows that the peritrich ciliates benefit from the water currents induced by the basibiont, providing food items, but might also indicate that Bathyporeia spp. benefits from the presence of the epibionts as they are most prevalent on the body parts that are easiest to clean. Analyses of densities and distributions of epibiont and basibiont species gave first indications of the ecological niche of the peritrich ciliate communities.

First description of epizoic ciliates (Sessilida Stein, 1933) on Bathyporeia Lindström, 1855 (Peracarida, Amphipoda) and infestation patterns in brackish and marine waters

in Crustaceana

Sections

References

BickelS. L.TangK. W.GrossartH.-P.2012. Ciliate epibionts associated with crustacean zooplankton in German lakes: distribution, motility, and bacterivory. Front. Microbiol.3: 243.

BierhofM. J.RoosP. J.1977. Sedentary ciliates from two Dutch freshwater Gammarus species. Bijdr. Dierk.46: 151-170.

BoenigkJ.NovarinoG.2004. Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol.34: 181-192.

BoumaH.de JongD. J.TwiskF.WolfsteinK.2005. Zoute wateren EcotopenStelsel (ZES.1); voor het in kaart brengen van het potentiële voorkomen van levensgemeenschappen in zoute en brakke rijkswateren. Report RIKZ 2005.024. (LnO Middelburg). [In Dutch.]

ChiavelliD.MillsE. L.ThrelkeldS. T.1993. Host preference, seasonality, and community interactions of zooplankton epibionts. Limnol. Oceanogr.38: 574-583.

ClampJ. C.1973. Observations on the host-symbiont relationship of Lagenophrys lunatus Imamura. J. Protozool.20: 558-561.

ColemanCh. O.1989. Burrowing, grooming, and feeding behavior of Paraceradocus, an Antarctic amphipod genus (Crustacea). Polar Biol.10: 43-48.

CozzoliF.BoumaT. J.YsebaertT.HermanP. M. J.2013. Application of non-linear quantile regression to macrozoobenthic species distribution modelling: comparing two contrasting basins. Mar. Ecol. Prog. Ser.475: 119-133.

CurdsC. R.GatesM. A.RobertsD. Mcl.1983. British and other freshwater ciliated Protozoa; part II; Ciliophora: Oligohymenophora and Polyhymenophora; keys and notes for the identification of the free-living genera. KermackD. M.BarnesR. S. K. (series eds.) Synopses of the British Fauna 23. (Cambridge University PressCambridge).

De-La-Ossa-CarreteroJ. A.Del-Pilar-RuspY.Giménez-CasaldueroF.Sánchez-LizasoJ. L.DauvinJ.-C.2012. Sensitivity of amphipods to sewage pollution. Est. Coast. Shelf Sci.96: 129-138.

d’Udekem d’AcozC.2004. The genus Bathyporeia Lindström, 1855, in western Europe (Crustacea: Amphipoda: Pontoporeiidae). Zool. Verh. Leiden348: 3-162.

EscaravageV.HummelH.BlokD.DekkerA.EngelbertsA.Van HoeselO.Kleine SchaarsL.MarkusseR.MeliefsteT.SistermansW.WijnhovenS.2013. Macrozoöbenthosonderzoek MWTL in de Delta 2012; Waterlichamen: Oosterschelde en Westerschelde (najaar). Rapportage in het kader van Monitoring Waterstaatkundige Toestand des Lands (MWTL): 1-20 + Annexes. Monitor Taskforce Publication Series 2013-23; RWS report BM 13.14. (NIOZ Yerseke). [In Dutch.]

FaasseM.van MoorselG.2003. The North-American amphipods, Melita nitida Smith, 1873 and Incisocalliope aestuarius (Watling and Maurer, 1973) (Crustacea: Amphipoda: Gammaridea), introduced to the Western Scheldt estuary (The Netherlands). Aquat. Ecol.37: 13-22.

FenchelT.1965. On the ciliate fauna associated with the marine species of the amphipod genus Gammarus J. G. Fabricius. Ophelia2: 281-303.

Fernandez-LeboransG.2009. A review of recently described epibiosis of ciliate Protozoa on Crustacea. Crustaceana82: 167-189.

Fernandez-LeboransG.GabilondoR.2005. Hydrozoan and protozoan epibionts on two decapod species, Liocarcinus depurator (Linnaeus, 1758) and Pilumnus hirtellus (Linnaeus, 1761), from Scotland. Zool. Anzeiger244: 59-72.

Fernandez-LeboransG.Tato-PortoM. L.2000. A review of the species of protozoan epibionts on crustacean. I. Peritrich ciliates. Crustaceana73: 643-683.

Fernandez-LeboransG.Von RintelenK.2010. Biodiversity and distribution of epibiontic communities on Caridina ensifera (Crustacea, Decapoda, Atyidae) from Lake Poso: comparison with another ancient lake system of Sulawesi (Indonesia). Acta Zool.91: 163-175.

HortonT.LowryJ.CostelloM.Bellan-SantiniD.2013. Bathyporeia Lindström 1855. In: T. Horton J. Lowry & C. de Broyer (eds.) World Amphipoda database. World register of marine species available online at http://www.marinespecies.org/aphia.php?p=taxdetails&id=101742 (accessed 31 December 2013).

KahlA.1935. Urtiere oder Protozoa; I: Wimpertiere oder Ciliata (Infusoria); Eine Bearbeitung der freilebenden und ectocommensalen Infusorien der Erde, unter Ausschluß der marinen Tintinnidae. In: DahlF.DahlM.BischoffH. (eds.) Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise30. (Verlag von Gustav FischerJena). [In German.]

LincolnR. J.1979. British marine Amphipoda: Gammaridea: 1-658. (British Museum (Natural History)London).

MironovaE. I.TeleshI. V.SkarlatoS. O.2014. Ciliates in plankton of the Baltic Sea. Protistology8: 81-124.

MohrJ. L.1952. Protozoa as indicators of pollution. Sci. Monthly74: 7-9.

NicolaisenW.KanneworffE.1969. On the burrowing and feeding habits of the amphipods Bathyporeia pilosa Lindström and Bathyporeia sarsi Watkin. Ophelia6: 231-250.

PattersonD. J.1978. Kahl’s keys to the ciliates. A translation by D.J. Patterson of the keys to the level of subgenus originally published in Kahl A. Wimpertiere oder Ciliata in Dahl’s Die Tierwelt Deutschlands Parts 18 (1930) 21 (1931) 25 (1932) and 30 (1935). (University of BristolBristol).

PrechtH.1936. Epizoen der Kieler Bucht. Nova Acta Leopoldina3: 405-475. [In German.]

SandbergE.1994. Does short-term oxygen depletion affect predator-prey relationships in zoobenthos? Experiments with the isopod Saduria entomon. Mar. Ecol. Prog. Ser.103: 73-80.

UtzL. R. P.2003. Identification life history and ecology of peritrich ciliates as epibionts on calanoid copepods in the Chesapeake Bay: 1-187. (Ph.D. Dissertation University of Maryland U.S.A.).

UtzL. R. P.CoatsD. W.2005. Spatial and temporal patterns in the occurrence of peritriche ciliates as epibionts on calanoid copepods in the Chesapeake Bay, USA. J. Eukaryot. Microbiol.52: 236-244.

UtzL. R. P.SimaõT. L. L.SafiL. S. L.EizirikE.2010. Expanded phylogenetic representation of genera Opercularia and Epistylis sheds light on the evolution and higher-level taxonomy of peritrich ciliates (Ciliophora: Peritrichia). J. Eukaryot. Microbiol.57: 415-420.

WahlM.1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser.58: 175-189.

WahlM.2009. Epibiosis: ecology, effects and defenses. In: WahlM. (ed.) Marine hard bottom communities: patterns dynamics diversity and change: 61-72. (SpringerHeidelberg).

WATERBASE2016. Rijkswaterstaat Waterbase — Historic water quantity and water quality data made available by Rijkswaterstaat Dutch Ministry of Infrastructure and the Environment available online at http://live.waterbase.nl/waterbase_wns.cfm?taal=nl (accessed 6 June 2016). [In Dutch.]

WijnhovenS.van RielM. C.van der VeldeG.2003. Exotic and indigenous freshwater gammarid species: physiological tolerance to water temperature in relation to ionic content of the water. Aquat. Ecol.37: 151-158.

WolffW. J.2005. Non-indigenous marine and estuarine species in The Netherlands. Zool. Med. Leiden9: 1-116.

Figures

  • View in gallery

    Schematic drawing of a female Bathyporeia elegans Watkin, 1938 after d’Udekem d’Acoz (2004) with indication of the distinguished regions on the body where the presence or absence of ciliates was recorded. No ciliates have been observed in the region indicated in white.

  • View in gallery

    Photographs of peritrich ciliates on Bathyporeia sp.: a, typical colonies of peritrich ciliates (most likely Zoothamnium nanum Kahl, 1933) attached to a peduncle of an antenna from Bathyporeia pilosa Lindström, 1855 (specimen stained with Rose Bengal and preserved in formaldehyde) (1000× magnification); b, typical colonies of peritrich ciliates (most likely Zoothamnium nanum) in detail (on a specimen stained with Rose Bengal and preserved in formaldehyde) (4000× magnification); c, individual and small colonies of alive Zoothamnium sp. on peduncles from antenna 2 of an alive specimen of Bathyporeia sarsi Watkin, 1938 (1000× magnification); d, a singular alive specimen of Zoothamnium nanum on Bathyporeia sarsi (4000× magnification) with its cilia out; e, singular alive peritrich ciliates on Bathyporeia pilosa (4000x magnification) showing a specimen without a spasmoneme (Epistylis sp.); f, singular and couples of peritrich ciliates on Bathyporeia pilosa (4000× magnification) where the lower specimen, belonging to the genus Zoothamnium, lacks transverse folds (Zoothamnium sp.).

  • View in gallery

    Presence (0 = ‘always absent’; 1 = ‘always present’) of ciliates in regions of the body of Bathyporeia specimens indicated in fig. 1 (region 1, antennae region; region 2, mouth region; region 3, gnathopod, pereopod and pleopod region; region 4, uropod region) for 3 ciliate density classes (Category 1, 1-25; category 2, 26-75; category 3, >75 ciliates per Bathyporeia specimen). Significant differences (p<0.05) are indicated with different characters.

  • View in gallery

    Principal Component Analysis (PCA) of Bathyporeia species densities and average ciliate numbers per specimen related to ‘environmental’ characteristics (i.e., substrate type (fine sand; muddy fine sand; other soft sediment substrate), salinity range (mesohaline; polyhaline), water body (Oosterschelde; Westerschelde) and location (depth; longitude as relative distance to the North Sea), sample year, total Bathyporeia density).

  • View in gallery

    Relative number of ciliates per Bathyporeia specimen (all species included unless otherwise indicated), calculated as the average density class (varying from 0 (no ciliates) to 3 (>75 ciliates)) ± standard error per sample, comparing: a, the species B. pilosa Lindström, 1855 and B. sarsi Watkin, 1938; b, the gender groups males and the total of females and juveniles; c, the Oosterschelde and the polyhaline part of the Westerschelde; d, the entire waterbodies of the Oosterschelde and Westerschelde. All graphs show differences that are significant (p<0.05).

  • View in gallery

    Positioning of MWTL samples with Bathyporeia present taken during 2010-2012 in the Oosterschelde and Westerschelde in the south-western part of the Netherlands with an indication of their total numbers and the relative ciliate infestation rates. The colour gradient in each of the two systems indicates the relative water depth with the deepest parts having the darkest colour. Specimens for alive observation were collected at ‘Den Inkel’ and ‘Galgeplaat’. The small map shows all MWTL samples taken during the same years.

  • View in gallery

    Relative number of ciliates per Bathyporeia pilosa Lindström, 1855 specimen, calculated as the average density class (varying from 0 (no ciliates) to 3 (>75 ciliates)) ± standard error per sample, comparing the different years for the mesohaline and the polyhaline zone of the Westerschelde. Significant differences (p<0.05) are indicated with different characters.

Information

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 45 45 20
Full Text Views 94 94 65
PDF Downloads 6 6 4
EPUB Downloads 0 0 0