Crustacean zooplankton communities in Chiloé Island coastal lakes (42°S, Chile)

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?

Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.


Have Institutional Access?

Access content through your institution. Any other coaching guidance?


The lakes of Chiloé Island have a high dissolved organic carbon concentration (known as “humic”) and show a connection with brackish water. They also display a high species richness of crustacean zooplankton. The aim of the present study is to characterize the potential factors that explain crustacean species richness in Chiloé Island lakes. To that purpose parameters of the abiotic environment were determined. The results of PCA performed on those data revealed the existence of three lakes with high crustacean species richness that are relatively deep, show high nitrogen concentrations, and are located at relatively high altitude. In contrast, there are two lakes with low species richness, high mineral concentration, and situated at low altitude. One of these lowland lakes gives rise to a river effluent to the sea, and it is connected to the other lake; these observations agree with the results of a performed cluster analysis. Nevertheless, the co-occurrence null model analysis revealed the absence of regulator patterns in species associations, which could be explained to the fact that many of the species occur in most of the lakes. These results are markedly different in comparison to Patagonian lakes of Argentina and Chile that have a low crustacean species number.

Crustacean zooplankton communities in Chiloé Island coastal lakes (42°S, Chile)

in Crustaceana



Anton-PardoM.ArmengolX.2012. Effects of salinity and water temporality on zooplankton community in coastal Mediterranean ponds. Est. Coast. Shelf Sci.114: 93-99.

CamposH.1997. Determinación de la capacidad de carga y balance de fósforo y nitrógeno de los lagos Natri Cucao Huillinco Tepuhueico y Tarahuin. Technical Report Fisheries Research Foundation — Chile FIP-IT/96-54 Vol. 1 [In Spanish.]

De los Ríos-EscalanteP.2016. Null models for study rotifers and crustacean zooplankton species richness in Chilean Patagonian lakes. Act. Limnol. Bras.28: e11.

EverittB. S.HothornT.2016. A handbook of statistical analysis using R 1st edn. Available online at: (accessed 13 July 2016).

GinatullinaE.AtwellL.SaitoL.2017. Resilence and resistence of zooplankton communities to drought-induced salinity in freshwater and saline lakes of central Asia. J. Arid Env.144: 1-11.

GotelliN. J.2000. Null models of species co-occurrence patterns. Ecology81: 2606-2621.

GotelliN. J.EntsmingerG. L.2007. EcoSim: Null models software for ecology. Version 7. Available online at: (Acquired Intelligence & Kesey-Bear Jericho VT).

GotelliN. J.EllisonA. M.2013. EcoSimR 1.00. Available online at:

GutkowskaA.PaturejE.KowalskaE.2012. Qualitative and quantitative methods for sampling zooplankton in shallow coastal estuaries. Ecohydrol. Ecohydrobiol.12: 253-263.

HauensteinE.GonzálezM.Peña-CortésF.Muñoz-PedrerosA.2002. Clasificación y caracterización de la flora y vegetación de los humedales de la costa de Toltén (IX Región, Chile). Gayana Bot.59: 87-100.

HemrajD. A.HossainM. A.YeQ.QinJ. G.LetermeS. C.2017. Plankton bioindicators of environmental conditions in coastal lagoons. Est. Coast. Shelf Sci.184: 102-114.

JeppensenE.LauridsenT. L.MitchellS. F.BurnsC. W.1997. Do zooplanktivorous fish structure the zooplankton communities in New Zealand lakes? New Zealand J. Mar. Freshwat. Res.31: 163-173.

ModenuttiB. E.BalseiroE. G.QueimaliñosC. P.Añón SuárezD. A.DieguezM. C.AlbariñoR. J.1998. Structure and dynamics of food webs in Andean lakes. Lakes Reserv. Res. Manag.3: 179-189.

PratiwiN. T. M.ArdhitoA.WulandariD. Y.IswantariA.2016. Horizontal distribution of zooplankton in Tangerang coastal waters, Indonesia. Proceedia Env. Sci.33: 470-477.

R Development Core Team2009. R: a language and environment for statistical computing. (R Foundation for Statistical ComputingVienna).

SchliepK. P.2011. Phangorn: phylogenetic analysis in R. Bioinformatics27: 592-593.

SotoD.De los RiosP.2006. Trophic status and conductivity patterns as regulators in daphnids dominance and zooplankton assemblages in lakes and ponds of Torres del Paine National Park. Biologia Bratislava61: 541-546.

SotoD.ZuñigaL. R.1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Rev. Chilena Hist. Nat.64: 569-581.

TihoS.JosensG.2007. Co-occurrence of earth worms in urban surroundings: a null model analysis of community structure. Eur. J. Soil Biol.43: 84-90.

TondohJ. E.2006. Seasonal changes in earthworm diversity and community structure in central Côte d’Ivoire. Eur. J. Soil Biol.42: s334-s340.

VillalobosL.ParraO.GrandjeanM.JaqueE.WölflS.CamposH.2003. River basin and limnological study in five humic lakes of the Chiloé Island. Rev. Chilena Hist. Nat.76: 10-15.

WhitmanR. L.NeversM. B.GoodrichM. L.MurphyP. C.DavisB. M.2004. Characterization of Lake Michigan coastal lakes using zooplankton assemblages. Ecol. Indic.4: 277-286.

WoelflS.2007. The distribution of large mixotrophic ciliates (Stentor) in deep north Patagonian lakes (Chile): first results. Limnologica37: 28-36.


Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 13 13 12
Full Text Views 8 8 7
PDF Downloads 2 2 2
EPUB Downloads 0 0 0