Effect of bisphenol A exposure on the expressions of five ovary development related genes in the oriental river prawn, Macrobrachium nipponense (Decapoda, Palaemonidae)

in Crustaceana
Restricted Access
Get Access to Full Text
Rent on DeepDyve

Have an Access Token?



Enter your access token to activate and access content online.

Please login and go to your personal user account to enter your access token.



Help

Have Institutional Access?



Access content through your institution. Any other coaching guidance?



Connect

The oriental river prawn, Macrobrachium nipponense, is one of the important commercial shrimp species. Recently a severe problem of precocious maturation has greatly hampered this shrimp aquaculture industry. Bisphenol A (BPA), a high-production-volume chemical substance used in the plastic manufacturing industry, has been thought of as an endocrine disruptor on the developmental processes of animals. In this study, we investigated the effect of BPA exposure on the expressions of five ovary development related genes such as Mago nashi, Tsunagi, Gustavus, Ubc9, and Von Willebrand factor D-Kazal in M. nipponense. Five concentration gradients (5.01, 7.76, 12.06, 18.62 and 28.84 mg/l) of BPA were set and the ovaries of exposed prawns were collected at different time points for expression analysis. Compared with the control group at day 19, BPA had a two-phase effect: a stimulating effect under low concentrations from 5.01 to 12.06 mg/l, whereas a negative effect was noted at high concentrations from 12.06 to 28.84 mg/l. The expression profiles under different BPA concentrations significantly changed along with the extension of exposure time. The medium concentration of BPA (12.06 mg/l) had a persistent influence on the expressions of the transcripts, while the effect was transient under the lowest concentration (5.01 mg/l). It is suggested that the concentration under 5.01 mg/l might be safe for the development of M. nipponense, but exceeding 12.06 mg/l may be harmful. When exposed to clean fresh water without BPA, the gene expressions rebounded a little. This may indicate that the biological damage of BPA was partly reversible after the prawns had been placed in the fresh water without BPA. So the BPA pollutant concentration should be controlled at secure levels in order to ensure safety in aquaculture, in this respect. This study provides fundamental data for the relationship between BPA and precocious maturation of the prawn, and will most probably contribute to the understanding of the sexual maturation process in crustaceans.

Effect of bisphenol A exposure on the expressions of five ovary development related genes in the oriental river prawn, Macrobrachium nipponense (Decapoda, Palaemonidae)

in Crustaceana

Sections

References

ArpH. P.2013. Compilation of Norwegian screening data for selected contaminants (2002-2012). (Norwegian Climate and Pollution Agency Oslo).

BakerM. E.1988. Invertebrate vitellogenin is homologous to human von Willebrand factor. Biochemical Journal256: 1059-1061.

BeltK. V. D.WittersR. V.2003. Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens. Ecotoxicology & Environmental Safety56: 271-281.

BoswellR. E.ProutM. E.SteichenJ. C.1991. Mutations in a newly identified Drosophila melanogaster gene, Mago nashi, disrupt germ cell formation and result in the formation of mirror-image symmetrical double abdomen embryos. Development113: 373-384.

ChenJ.WangC.GaoH.YanB.2016. Expression analysis of vasa in Asian paddle crab (Charybdis japonica) exposed to bisphenol A. Electronic Journal of Biotechnology24: 49-55.

ColbornT.2002. Clues from wildlife to create an assay for thyroid system disruption. Environmental Health Perspectives110: 363-367.

ColbornT.Vom SaalF. S.SotoA. M.1993. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect.101: 378-384.

DamstraT.BarlowS.BergmanA.KavlockR. J.KraakG. v. d.2002. Global assessment of the state of the science of endocrine disruptors. Poluição Ambiental35: 333-343.

FinnR. N.2007. Vertebrate yolk complexes and the functional implications of phosvitins and other subdomains in vitellogenins. Biology of Reproduction76: 926-935.

FrommeH.KüchlerT.OttoT.PilzK.MüllerJ.WenzelA.2002. Occurrence of phthalates and bisphenol A and F in the environment. Water Research36: 1429-1438.

GaoX. G.LiuH.XuJ.CaiS. L.2006. Study on site of vitellogenin in synthesis in the freshwater prawn Macrobrachium nipponense. Biotechnol. Bull. (Suppl.): 438-444. [In Chinese.]

GarcíaG.NandiniS.SarmaS.2004. Effect of cadmium on the population dynamics of Moina macrocopa and Macrothrix triserialis (Cladocera). Bulletin of Environmental Contamination and Toxicology72: 717-724.

GuilletteL. J.Jr.GundersonM. P.2001. Alterations in development of reproductive and endocrine systems of wildlife populations exposed to endocrine-disrupting contaminants. Reproduction122: 857-864.

HachetO.EphrussiA.2001. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Current Biology Cb.11: 1666-1674.

ImJ.LöfflerF. E.2016. Fate of bisphenol A in terrestrial and aquatic environments. Environ. Sci. Technol.50: 8403-8416.

JalkanenJ.KotimäkiM.HuhtaniemiI.PoutanenM.2006. Novel epididymal protease inhibitors with Kazal or WAP family domain. Biochemical & Biophysical Research Communications349: 245-254.

JandegianC. M.DeemS. L.BhandariR. K.HollidayC. M.NicksD.RosenfeldC. S.SelcerK. W.TillittD. E.Vom SaalF. S.Vélez-RiveraV.2015. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta). General and Comparative Endocrinology216: 77-85.

JinX.ChenJ.2017. Joint toxicity of bisphenol A and phenol to the juvenile prawn of Macrobrachium nipponense. Journal of Biology34: 38-41. [In Chinese.]

KalmykovaY.BjörklundK.StrömvallA. M.BlomL.2013. Partitioning of polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachates and stormwater. Water Research47: 1317.

KangJ.-H.AasiD.KatayamaY.2007. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms. Critical Reviews in Toxicology37: 607-625.

KataokaN.YongJ.Narry KimV.VelazquezF.PerkinsonR. A.WangF.DreyfussG.2000. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Molecular Cell6: 673-682.

KrishnanA. V.StathisP.PermuthS. F.TokesL.FeldmanD.1993. Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology132: 2279-2286.

LeeH. B.PeartT. E.2000. Determination of bisphenol A in sewage effluent and sludge by solid-phase and supercritical fluid extraction and gas chromatography/mass spectrometry. Journal of AOAC International83: 290-297.

LewisR. J.Sr.TatkenR. L.1979. Registry of toxic effects of chemical substances. (U.S. Dept. of Health and Human Services, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and HealthAtlanta, GA).

LiY.MaW. M.DaiJ. Q.FengC. Z.YangF.OhiraT.NagasawaH.YangW. J.2008. Inhibition of a novel sperm gelatinase in prawn sperm by the male reproduction-related Kazal-type peptidase inhibitor. Molecular Reproduction & Development75: 1327-1337.

LiY.QianY. Q.MaW. M.YangW. J.2009. Inhibition mechanism and the effects of structure on activity of male reproduction-related peptidase inhibitor Kazal-type (MRPINK) of Macrobrachium rosenbergii. Marine Biotechnology11: 252-259.

MandichA.BotteroS.BenfenatiE.CevascoA.ErraticoC.MaggioniS.MassariA.PedemonteF.ViganòL.2007. In vivo exposure of carp to graded concentrations of bisphenol A. General & Comparative Endocrinology153: 15-24.

MatozzoV.GagnéF.MarinM. G.RicciardiF.BlaiseC.2008. Vitellogenin as a biomarker of exposure to estrogenic compounds in aquatic invertebrates: a review. Environment International34: 531-545.

McLachlanJ. A.2001. Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocrine Reviews22: 319-341.

MelcerH.KleckaG.2011. Treatment of wastewaters containing bisphenol A: state of the science review. Water Environment Research a Research Publication of the Water Environment Federation83: 650-666.

MohrS. E.DillonS. T.BoswellR. E.2001. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes & Development15: 2886-2899.

NeckersL.MimnaughE.SchulteT. W.1999. The Hsp90 chaperone family. (SpringerBerlin and Heidelberg).

NewmarkP. A.MohrS. E.GongL.BoswellR. E.1997. Mago nashi mediates the posterior follicle cell-to-oocyte signal to organize axis formation in Drosophila. Development124: 3197-3207.

OpreskoL. K.WileyH. S.1987. Receptor-mediated endocytosis in Xenopus oocytes. II. Evidence for two novel mechanisms of hormonal regulation. Journal of Biological Chemistry262: 4116-4123.

PanX.LiH.ZhangP.JinB.ManJ.TianL.SuG.ZhaoJ.LiW.LiuH.2006. Ubc9 interacts with SOX4 and represses its transcriptional activity. Biochem. Biophys. Res. Commun.344: 727-734.

PichlerA.MelchiorF.2002. Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport. Traffic3: 381-387.

PrattW. B.ToftD. O.1997. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrine Reviews18: 306-360.

RobinsonB. J.HuiJ. P. M.SooE. C.HellouJ.2008. Estrogenic compounds in seawater and sediment from Halifax harbour, Nova Scotia, Canada. Environ. Toxicol. Chem.28: 18-25.

RykowskaI.WasiakW.2006. Properties, threats, and methods of analysis of bisphenol A and its derivates. Acta Chromatographica16: 7.

SchwarzbauerJ.HeimS.BrinkerS.LittkeR.2002. Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Research36: 2275-2287.

ShenW.2007. Long term estrogenic effects of bisphenol A and nonyphenol on the development and reproduction of zebrafish (Danio rerio). (East China Normal UniversityShanghai). [In Chinese.]

StaplesC. A.DomeP. B.KleckaG. M.OblockS. T.HarrisL. R.1998. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere36: 2149-2173.

StyhlerS.NakamuraA.LaskoP.2002. VASA localization requires the SPRY-domain and SOCS-box containing protein, GUSTAVUS. Developmental Cell3: 865-876.

TabataA.WatanabeN.YamamotoI.OhnishiY.ItohM.KameiT.MagaraY.TeraoY.2004. The effect of bisphenol A and chlorinated derivatives of bisphenol A on the level of serum vitellogenin in Japanese medaka (Oryzias latipes). Water Science & Technology50: 125-132.

TrueloveC.1992. Chemically-induced alterations in sexual and functional development. The Wildlife/Human Connection Series. (Palgrave Macmillan USNew York).

WangZ. Y.QiuQ. Q.SeufertW.TaguchiT.TestaJ. R.WhitmoreS. A.CallenD. F.WelshD.ShenkT.DeuelT. F.1996. Molecular cloning of the cDNA and chromosome localization of the gene for human ubiquitin-conjugating enzyme 9. Journal of Biological Chemistry271: 24811-24816.

WuP.QiD.ChenL.ZhangH.ZhangX.QinJ. G.HuS.2009. Gene discovery from an ovary cDNA library of oriental river prawn Macrobrachium nipponense by ESTs annotation. Comp. Biochem. Physiol. (D Genomics Proteomics) 4: 111-120.

XingY.GosdenR.LaskoP.ClarkeH.2006. Murine homologues of the Drosophila gustavus gene are expressed in ovarian granulosa cells. Reproduction131: 905-915.

YamamotoT.YasuharaA.ShiraishiH.NakasugiO.2001. Bisphenol A in hazardous waste landfill leachates. Chemosphere42: 415-418.

ZhangF.ChenL.QinJ.ZhaoW.WuP.2011a. A novel gene with a vWD domain and three Kazal-type domains: molecular cloning and expression in the ovary of the oriental river prawn, Macrobrachium nipponense. Russian Journal of Genetics47: 1052-1057.

ZhangF.ChenL.QinJ.ZhaoW.WuP.YuN.MaL.2011b. cDNA cloning and expression analysis of gustavus gene in the oriental river prawn Macrobrachium nipponense. PLoS One6: e17170.

ZhangF.ChenL.WuP.ZhaoW.LiE.QinJ.2010. cDNA cloning and expression of Ubc9 in the developing embryo and ovary of oriental river prawn, Macrobrachium nipponense. Comp. Biochem. Physiol. B (Biochem. Mol. Biol.) 155: 288-293.

ZhangF.YuN.LiE.QinJ.ChenL.WuP.MaL.ZhaoW.2016. Two genes with fertile attributes from Macrobrachium nipponense (De Haan, 1849) (Natantia: Palaemonidae): evidence from expression analysis of Mago nashi and Tsunagi proteins during oocyte maturation and embryonic development. Journal of Crustacean Biology36: 229-237.

ZhaoW.ChenL.QinJ.WuP.ZhangF.LiE.TangB.2011. MnHSP90 cDNA characterization and its expression during the ovary development in oriental river prawn, Macrobrachium nipponense. Mol. Biol. Reprod.38: 1399-1406.

ZhaoY. M.ZhaoY. L.WangQ.YaoJ. J.AnC. G.DuanX. W.2006. Digestive enzyme activities and the contents of the amino acid during the embryonic development of Macrobrachium nipponense. J. East China Norm. Univ.2: 75-81. [In Chinese.]

ZhuangH. S.YangG.2005. Study on the acute and subacute toxicities of bisphenol A on the carp. Environmental Chemistry24: 682-684.

ZuckerE.JohnsonS. L.1985. Hazard Evaluation Division Standard Evaluation Procedure: acute toxicity test for freshwater invertebrates. (US Environmental Protection Agency Office of Pesticide Programs).

Figures

  • View in gallery

    Comparison of the expression profiles of five genes related to ovary development in Macrobrachium nipponense (De Haan, 1849), between experimental group and control group in different concentrations of BPA at day 19. A, MnMago; B, MnTsu; C, MnGus; D, MnUbc9; E, MnvWD-Kazal. P<0.05; P<0.01.

  • View in gallery

    The expression profiles of five genes (MnMago, MnTsu, MnGus, MnUbc9 and MnvWD-Kazal) related to ovary development in Macrobrachium nipponense (De Haan, 1849) at different times with 5.01, 12.06 and 28.84 mg/l of BPA, respectively. A, 5.01 mg/l; B, 12.06 mg/l; C, 28.84 mg/l. P<0.05; P<0.01.

Index Card

Content Metrics

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 20 20 18
Full Text Views 7 7 7
PDF Downloads 1 1 1
EPUB Downloads 0 0 0