Do you want to stay informed about this journal? Click the buttons to subscribe to our alerts.
The purpose of this study was to estimate one of the important aspects of amphipod laboratory culturing — the effect of different types of nutrition on the key biochemical markers widely used in biomonitoring. The study was performed with the Baikal endemic amphipod species Eulimnogammarus verrucosus (Gerstfeldt, 1858), E. cyaneus (Dybowski, 1874), and Gmelinoides fasciatus (Stebbing, 1899). These species are characterized by different ecological properties and evolutionary history. The results of the study demonstrate that a long-term laboratory exposure to different diets has a direct effect on vital and physiological parameters of the species’ adaptation (mortality, weight, protein concentration). Also, feeding imposes its influence on the common stress-markers of oxidative stress (activities of peroxidase, catalase, glutathione S-transferase), and on anaerobic metabolism (activity of lactate dehydrogenase) in Baikal amphipods, and this effect has a species-specific character. The results should be taken into consideration in future ecophysiological experiments performed with amphipods.
Le but de cette étude a été d’évaluer un parmi les important aspects de l’élevage en laboratoire des amphipodes – l’effet de différents types de nutrition sur les marqueurs biochimiques clés utilisés en biosurveillance. L’étude a été effectuée avec les espèces d’amphipodes endémiques du lac Baïkal Eulimnogammarus verrucosus (Gerstfeldt, 1858), E. cyaneus (Dybowski, 1874), et Gmelinoides fasciatus (Stebbing, 1899). Ces espèces sont caractérisées par des caractères écologiques et une histoire évolutive différents. Les résultats de l’étude démontrent qu’une exposition à long terme en laboratoire à différents régimes a un effet direct sur les paramètres vitaux et physiologiques pour l’adaptation de l’espèce (mortalité, poids, concentration de protéines). De plus la nourriture influence les marqueurs communs du stress oxydatif (activité de peroxydase, catalase, glutathion S-transférase), et du métabolisme anaérobie (activité de la lactase déshydrogénase) chez les amphipodes du lac Baïkal, et ces effets sont caractéristiques de l’espèce. Les résultats devraient être pris en compte dans les futures expériences écophysiologiques sur les amphipodes.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Aebi, H., 1984. Catalase in vitro. In: Methods in enzymology, 105: 121-126. (Academic Press, Cambridge, MA).
Axenov-Gribanov, D., D. Bedulina, Z. Shatilina, L. Jakob, K. Vereshchagina, Y. Lubyaga, H. O. Pörtner, F. J. Sartoris & M. Timofeyev, 2016. Thermal preference ranges correlate with stable signals of universal stress markers in Lake Baikal endemic and holarctic amphipods. PLoS One, 11(10): e0164226.
Bazikalova, A. Ya., 1945. Lake Baikal amphipods. Proc. Baikal. Limn. Stat., 11: 1-440. [In Russian.]
Bedulina, D., M. B. Evgen’ev, M. A. Timofeyev, M. V. Protopopova, D. D. Garbuz, V. V. Pavlichenko, T. Luckenbach, Zh. M. Shatilina, D. V. Axenov-Gribanov, A. N. Gurkov, I. M. Sokolova & O. G. Zatsepina, 2013. Expression patterns and organization of the hsp70 genes correlate with thermotolerance in two congener endemic amphipod species (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal. Mol. Ecol., 22(5): 1416-1430.
Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2): 248-254.
Carocho, M. & I. C. Ferreira, 2013. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 51: 15-25.
Da Silva-Castiglioni, D., G. T. Oliveira & L. Buckup, 2010. Metabolic responses of Parastacus defossus and Parastacus brasiliensis (Crustacea, Decapoda, Parastacidae) to hypoxia. Comp. Biochem. Physiol., (A) 156(4): 436-444.
Dave, A., L. Maru & A. Jain, 2016. LDH (Lactate Dehydrogenase): a biochemical marker for the prediction of adverse outcomes in pre-eclampsia and eclampsia. J. Obstetrics Gynecology Ind., 66(1): 23-29.
Drotar, A., P. Phelps & R. Fall, 1985. Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci., 42(1): 35-40.
Fabritius, H., P. Walther & A. Ziegler, 2005. Architecture of the organic matrix in the sternal CaCO3 deposits of Porcellio scaber (Crustacea, Isopoda). J. Struct. Biol., 150(2): 190-199.
Gavrilov, G. B., 1949. On the problem of the time of reproduction in amphipods and isopods in Lake Baikal. D. Akad. Nauk USSR, 64(5): 739-742. [In Russian.]
Guner, U., 2007. Freshwater crayfish Astacus leptodactylus (Eschscholtz, 1823) accumulates and depurates copper. Environ. Monit. Assess., 133(1-3): 365-369.
Habig, W. H., M. J. Pabst & W. B. Jakoby, 1974. Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J. Biol. Chem., 249(22): 7130-7139.
Jakob, L., D. V. Axenov-Gribanov, A. N. Gurkov, M. Ginzburg, D. S. Bedulina, M. A. Timofeyev, T. Luckenbach, M. Lucassen, F. J. Sartoris & H. O. Pörtner, 2016. Lake Baikal amphipods under climate change: thermal constraints and ecological consequences. Ecosphere, 7(3): 1-15.
Jiang, Q. C., A. Dilixiati, C. Zhang, X. Z. Liu, W. T. Huang, L. L. Lv & J. X. Yang, 2013. Metabolic and antioxidant responses in juveniles of Cherax quadricarinatus under acute cadmium stress. J. Crust. Biol., 33(4): 552-556.
Kobanova, G. I., V. V. Takhteev, O. O. Rusanovskaya & M. A. Timofeyev, 2016. Lake Baikal ecosystem faces the threat of eutrophication. Int. J. Ecol., 2016: 6058082. DOI:10.1155/2016/6058082.
Kravtsova, L. S., R. M. Kamaltynov, E. B. Karabanov, I. V. Mekhanikova, T. Y. Sitnikova, N. A. Rozhkova & D. Y. Sherbakov, 2004. Macrozoobenthic communities of underwater landscapes in the shallow-water zone of southern Lake Baikal. Hydrobiologia, 522(1-3): 193-205.
March, B. D., 1977. The effects of photoperiod and temperature on the induction and termination of reproductive resting stage in the freshwater amphipod Hyalella azteca (Saussure). Can. J. Zool., 55(10): 1595-1600.
Mehanikova, I. V., 2015. The mouthparts morphology and diet of Eulimnogammarus cyaneus (Crustacea, Amphipoda), who lives in Lake Baikal nearshore zone (Bolshie Koty Bay, Southern Baikal). Zool. Zh., 94(12): 1379. [In Russian.]
Moore, M. V., S. E. Hampton, L. R. Izmest’eva, E. A. Silow, E. V. Peshkova & B. K. Pavlov, 2009. Climate change and the world’s “Sacred Sea” — Lake Baikal, Siberia. Bioscience, 59(5): 405-417.
Olsson, M. E., J. Ekvall, K. E. Gustavsson, J. Nilsson, D. Pillai, I. Sjöholm & M. G. Nyman, 2004. Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria × ananassa): effects of cultivar, ripening, and storage. J. Agricult. Food Chem., 52(9): 2490-2498.
Ørngreen, M. C., T. D. Jeppesen, T. Taivassalo, S. Hauerslev, N. Preisler, K. Heinicke & G. Van Hall, 2015. Lactate and energy metabolism during exercise in patients with blocked glycogenolysis (McArdle disease). J. Clin. Endocrinol. Metabol., 100(8): 1096-1104.
Othman, M. S. & D. Pascoe, 2001. Growth, development and reproduction of Hyalella azteca (Saussure, 1858) in laboratory culture. Crustaceana, 74(2): 171-181.
Prato, E., F. Biandolino & C. Scardicchio, 2006. Postembryonic growth, development and reproduction of Gammarus aequicauda (Martynov, 1931) (Gammaridae) in laboratory culture. Zool. Stud., 45(4): 503.
R Development Core Team, 2011. R: a language and environment for statistical computing. Ver. 2014 available at: http://www.R-project.org.
Takhteev, V. V., A. S. Pleshanov, E. A. Sudakova, I. N. Egorova & L. S. Kravtsova, 2009. Biota of Lake Baikal rift zone reservoirs. (Irkutsk State University Press, Irkutsk). [In Russian.]
Takhteev, V. V., I. V. Mechanikova & E. B. Govoruchina, 2003. Ecological mechanisms of endemic evolution of amphipods (Crustacea Amphipoda) from Lake Baikal. Contemp. Probl. Ecol., 3: 305-310. [In Russian.]
Takhteev, V. V., N. A. Berezina & D. A. Sidorov, 2015. Checklist of the Amphipoda (Crustacea) from continental waters of Russia, with data on alien species. Arthropoda Selecta, Moscow, 24(3): 335-370.
Timofeyev, M. A., 2010. Ecological and physiological aspects of adaptation to the abiotic environmental factor in endemic Baikal and Palearctic amphipod species: 1-382. (Dissertation Thesis, Hab., Tomsk State University).
Timofeyev, M. A., 2016. Monitoring: safeguarding the world’s largest lake. Nature, 538(7623): 41-41.
Timofeyev, M. A. & K. A. Kirichenko, 2004. Experimental estimation of the role of abiotic factors in containment of endemics beyond the bounds of Lake Baikal. Contemp. Probl. Ecol., 1: 41-50.
Timofeyev, M. A. & Zh. M. Shatilina, 2007. Different preference reactions of three Lake Baikal endemic amphipods to temperature and oxygen are correlated with symbiotic life. Crustaceana, 80(2): 129-138.
Timofeyev, M. A., Zh. M. Shatilina, D. S. Bedulina, M. V. Protopopova, V. V. Pavlichenko, O. I. Grabelnych & A. V. Kolesnichenko, 2008. Evaluation of biochemical responses in Palearctic and Lake Baikal endemic amphipod species exposed to CdCl2. Ecotox. Environ. Safe., 70(1): 99-105.
Timofeyev, M. A., C. Wiegand, B. K. Burnison, Zh. M. Shatilina, S. Pflugmacher & C. E. Steinberg, 2004. Impact of natural organic matter (NOM) on freshwater amphipods. Sci. Total Environ., 319(1): 115-121.
Timoshkin, O., et al., 2001. Index of animal species inhabiting Lake Baikal and its catchment area [in 2 volumes], 1: 1-832. (Nauka, Novosibirsk). [In Russian.]
Timoshkin, O. A., D. P. Samsonov, M. Yamamuro, M. V. Moore, O. I. Belykh, V. V. Malnik & G. A. Fedorova, 2016. Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): is the site of the world’s greatest freshwater biodiversity in danger? J. Great Lakes Res., 42(3): 487-497.
Veinberg, I. V. & R. M. Kamaltynov, 1998. Communities of macrozoobenthos from the Shingle Beach of Lake Baikal. Zool. Zh., 77(2): 158-165. [In Russian.]
Vereshchagina, K. P., Y. A. Lubyaga, Zh. M. Shatilina, D. S. Bedulina, A. N. Gurkov, D. V. Axenov-Gribanov, I. M. Sokolova & M. A. Timofeyev, 2016. Salinity modulates thermotolerance, energy metabolism and stress response in amphipods Gammarus lacustris. PeerJ, 4: e2657.
Ziegler, A., 1996. Ultrastructural evidence for transepithelial calcium transport in the anterior sternal epithelium of the terrestrial isopod Porcellio scaber (Crustacea) during the formation and resorption of CaCO3 deposits. Cell Tissue Res., 284(3): 459-466.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 643 | 31 | 8 |
Full Text Views | 4 | 0 | 0 |
PDF Views & Downloads | 8 | 3 | 3 |
The purpose of this study was to estimate one of the important aspects of amphipod laboratory culturing — the effect of different types of nutrition on the key biochemical markers widely used in biomonitoring. The study was performed with the Baikal endemic amphipod species Eulimnogammarus verrucosus (Gerstfeldt, 1858), E. cyaneus (Dybowski, 1874), and Gmelinoides fasciatus (Stebbing, 1899). These species are characterized by different ecological properties and evolutionary history. The results of the study demonstrate that a long-term laboratory exposure to different diets has a direct effect on vital and physiological parameters of the species’ adaptation (mortality, weight, protein concentration). Also, feeding imposes its influence on the common stress-markers of oxidative stress (activities of peroxidase, catalase, glutathione S-transferase), and on anaerobic metabolism (activity of lactate dehydrogenase) in Baikal amphipods, and this effect has a species-specific character. The results should be taken into consideration in future ecophysiological experiments performed with amphipods.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 643 | 31 | 8 |
Full Text Views | 4 | 0 | 0 |
PDF Views & Downloads | 8 | 3 | 3 |