The distribution and abundance of hippoid zoeal stages offshore Veracruz, southern Gulf of Mexico, and the migration routes of these larvae in the western Atlantic, were analysed. Samples were collected with a Bongo net and larval dispersal was analysed applying the HYCOM hydrodynamical model; particles (virtual larvae) originating from 35 sites were tracked for 77 days. Larvae of Albunea paretii Guérin-Méneville, 1853 were the most abundant, and dispersal simulations indicated that older larvae occurring off Veracruz might originate from Texas. However, a substantial proportion of self-recruitment (7.8%) can occur, mainly due to the seasonal changes in direction of currents over the shelf as well as the high variability in weather conditions. Results also suggest that several generations of A. paretii are needed for the species to reach Veracruz from South America. A hypothetical model regarding the migration routes of A. paretii larvae in the western Atlantic is proposed.
Se analizaron la distribución y la abundancia de los estadios zoea de hippoideos en la costa de Veracruz, sur del Golfo de México, y las rutas de migración de estas larvas en el Atlántico occidental. Las muestras se recolectaron con una red Bongo y se analizó la dispersión de larvas aplicando el modelo hidrodinámico HYCOM; las partículas (larvas virtuales) se originaron en 35 sitios y se rastrearon durante 77 días. Las larvas de Albunea paretii Guérin-Méneville, 1853 fueron las más abundantes y las simulaciones de dispersión indicaron que las larvas de mayor edad registradas en Veracruz podrían originarse en Texas. Sin embargo, una proporción considerable de auto-reclutamiento (7.8%) puede suceder debido principalmente a los cambios estacionales en la dirección de las corrientes sobre la plataforma y a la alta variabilidad en las condiciones climáticas. Los resultados también sugieren que se necesitan varias generaciones de A. paretii para que la especie llegue a Veracruz desde Sudamérica. Se propone un modelo hipotético de las rutas de migración de larvas de A. paretii en el Atlántico occidental.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Allende-Arandía, M. E., J. Zavala-Hidalgo, R. Romero-Centeno, A. Mateos-Jasso, J. M. Vargas-Hernández & L. Zamudio, 2015. Analysis of ocean current observations in the northern Veracruz Coral Reef System, Mexico: 2007-12. Journ. Coast. Res., 32: 46-55.
Alvera-Azcárate, A., A. Barth & R. H. Weisberg, 2009. The surface circulation of the Caribbean Sea and the Gulf of Mexico as inferred from satellite altimetry. Journ. Phys. Oceanogr., 39: 640-657.
Boyko, C. B., 2002. A worldwide revision of the recent and fossil sand crabs of the Albuneidae Stimpson and Blepharipodidae, new family (Crustacea: Decapoda: Anomura: Hippoidea). Bull. Amer. Mus. Nat. Hist., 272: 1-396.
Boyko, C. B. & P. A. McLaughlin, 2010. Annotated checklist of anomuran decapod crustaceans of the world (exclusive of the Kiwaoidea and families Chirostylidae and Galatheidae of the Galatheoidea). Raff. Bull. Zool., (Suppl.) 23: 139-151.
Bullard, S. G., 2003. Larvae of anomuran and brachyuran crabs of North Carolina. A guide to the described larval stages of anomuran (families Porcellanidae, Albuneidae and Hippidae) and brachyuran crabs of North Carolina. U.S.A. Crustaceana Monographs, 1: 1-137. (Brill, Leiden).
Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraft, et al., 2007. The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. Journ. Mar. Syst., 65: 60-83.
Cobo, V. J. & C. M. Okamori, 2008. Fecundity of the spider crab Mithraculus forceps (Decapoda, Mithracidae) from the northeastern coast of the state of São Paulo, Brazil. Iheringia, (Zool.), Porto Alegre, 98: 84-87.
Contreras, H., E. Jaramillo & P. Quijon, 2000. Natural history of Emerita analoga (Stimpson) (Anomura, Hippidae) in a sandy beach of northern Chile. Rev. Chil. Hist. Nat., 73: 705-715.
Dawson, M. N., P. H. Barber, L. I. González-Guzmán, R. J. Toonen, J. E. Dugan & R. K. Grosberg, 2011. Phylogeography of Emerita analoga (Crustacea, Decapoda, Hippidae), an eastern Pacific Ocean sand crab with long-lived pelagic larvae. Journ. Biogeogr., 38: 1600-1612.
Dexter, D. M., 1976. The sandy-beach fauna of Mexico. Southwest. Nat., 20: 479-485.
Dugan, J. E., A. M. Wenner & D. M. Hubbard, 1991. Geographic variation in the reproductive biology of the sand crab Emerita analoga (Stimpson) on the California coast. Journ. Exp. Mar. Biol. Ecol., 150: 63-81.
Edritanti, Q., A. Farajallah & Y. Wardiatno, 2016. Reproductive biology of ovigerous female Emerita emeritus (Crustacea, Decapoda) in Bengkulu coastal waters, Indonesia: egg production and reproductive output. Croat. Journ. Fish., 74: 103-109.
Efford, I. E., 1976. Distribution of the sand crabs in the genus Emerita (Decapoda, Hippidae). Crustaceana, 30: 169-183.
Faulkes, Z., 2017. The phenology of sand crabs, Lepidopa benedicti (Decapoda: Albuneidae). Journ. Coast. Res., 33: 1095-1101.
Faulkes, Z. & D. H. Paul, 1997. Digging in sand crabs (Decapoda, Anomura, Hippoidea): interleg coordination. Journ. Exp. Biol., 200: 793-805.
Felder, D. L., F. Álvarez, J. W. Goy & R. Lemaitre, 2009. Decapoda (Crustacea) of the Gulf of Mexico, with comments on the Amphionidacea. In: D. L. Felder & D. K. Camp (eds.), Gulf of Mexico — its origins, waters, and biota. I. Biodiversity: 1019-1104. (Texas A&M University Press, College Station, TX).
García-Montes, J. F., A. Gracia & L. A. Soto, 1987. Morphometry, relative growth and fecundity of the Gulf crab, Callinectes similis Williams, 1966 (Decapoda: Portunidae). Ciencias Marinas, 13: 137-161.
GBIF, 2018. Global Biodiversity Information Facility (GBIF) home page. Available from: https://www.gbif.org (accessed in March 2018).
Harvey, A., C. B. Boyko, P. McLaughlin & J. W. Martin, 2014. Anomura. In: J. W. Martin, J. Olesen & J. T. Høeg (eds.), Atlas of crustacean larvae: 283-294. (Johns Hopkins University Press, Baltimore).
Israel, S., T. S. Murugan, V. P. Venugopalan, T. Subramonian, N. Munuswamy & G. van der Velde, 2006. Larval development in the sand crab, Emerita emeritus (L., 1767) (Anomura, Hippoidea) reared in the laboratory. Crustaceana, 79: 441-458.
Johns, W. E., T. N. Lee, R. C. Beardsley, J. Candela, R. Limeburner & B. Castro, 1998. Annual cycle and variability of the north Brazil current. Journ. Phys. Oceanogr., 28: 103-128.
Knight, M. D., 1970. The larval development of Lepidopa myops Stimpson, (Decapoda, Albuneidae) reared in the laboratory, and the zoeal stages of another species of the genus from California and the Pacific coast of Baja California, Mexico. Crustaceana, 19: 125-156.
Kurata, H., 1970. Histories on the life history of decapod Crustacea of Georgia. III. Larvae of decapod crustaceans of Georgia. Final report: 1-274. (University of Georgia Marine Institute, Sapelo Island, Georgia).
Lester, S. E., B. I. Ruttenberg, S. D. Gaines & B. P. Kinlan, 2007. The relationship between dispersal ability and geographic range size. Ecol. Lett., 10: 745-758.
Lumpkin, R. & S. L. Garzoli, 2005. Near-surface circulation in the tropical Atlantic Ocean. Deep-Sea Res., (I) 52: 495-518.
Moreno-Casasola, P., 2004. Las playas y las dunas del Golfo de México. Una visión de la situación actual. In: M. Caso, I. Pisanty & E. Ezcurra (eds.), Diagnóstico ambiental del Golfo de México: 491-520. (Instituto Nacional de Ecología, Mexico City).
Mou-Sue, L. L., 1985. Composición y distribución de la fauna de crustáceos decápodos planctónicos en el suroeste del Golfo de México: 1-108. (B.Sc. Thesis, Universidad Nacional Autónoma de México, Mexico City).
Ohlmann, J. C. & P. P. Niiler, 2005. Circulation over the continental shelf in the northern Gulf of Mexico. Prog. Oceanogr., 64: 45-81.
Pacheco-Ríos, S., 2010. Patrones de distribución de la macroinfauna en cuatro playas arenosas del Estado de Veracruz, México: 1-49. (B.Sc. Thesis, Universidad Nacional Autónoma de México, Mexico City).
Paul, D. H., 1981. Homologies between body movements and muscular contractions in the locomotion of two decapods of different families. Journ. Exp. Biol., 94: 159-168.
Pérez-Brunius, P., P. García-Carrillo, J. Dubranna, J. Sheinbaum & J. Candela, 2013. Direct observations of the upper layer circulation in the southern Gulf of Mexico. Deep-Sea Res., (II, Top. Stud. Oceanogr.) 85: 182-194.
Puckett, B. J. & D. B. Eggleston, 2016. Metapopulation dynamics guide marine reserve design: importance of connectivity, demographics and stock enhancement. Ecosphere, 7: e01322. DOI:10.1002/ecs2.1322.
Rocha-Ramírez, A., R. Chávez-López, I. Antillón-Zaragoza & F. A. Fuentes-Mendoza, 2016. Variación nictemeral de los ensamblajes de macrocrustáceos en una playa arenosa del centro-norte de Veracruz, México. Rev. Mex. Biodivers., 87: 92-100.
Sanvicente-Añorve, L., J. Zavala-Hidalgo, E. Allende-Arandía & M. Hermoso-Salazar, 2014. Connectivity patterns among coral reefs systems in the southern Gulf of Mexico. Mar. Ecol. Prog. Ser., 498: 27-41.
Sanvicente-Añorve, L., J. Zavala-Hidalgo, E. Allende-Arandía & M. Hermoso-Salazar, 2018. Larval dispersal in three coral reef decapod species: influence of larval duration on the metapopulation structure. Plos ONE, 13: e0193457.
Sastre, M. P., 1990. Relationships between life history stages and population fluctuations in Emerita portoricencis. Bull. Mar. Sci., 47: 526-535.
Stuck, K. C. & F. M. Truesdale, 1986. Larval and early postlarval development of Lepidopa benedicti Schmitt, 1935 (Anomura: Albuneidae) reared in the laboratory. Journ. Crust. Biol., 6: 89-110.
Subramoniam, T. & V. Gunamalai, 2003. Breeding biology of the intertidal sand crab, Emerita (Decapoda: Anomura). Adv. Mar. Biol., 46: 91-182.
Vázquez-De La Cerda, A. M., R. O. Reid, S. F. Dimarco & A. E. Jochens, 2005. Bay of Campeche circulation: an update. In: W. Sturges & A. Lugo-Fernández (eds.), Circulation in the Gulf of Mexico: observations and models. Geophysical Monograph Series, 161: 279-293. (Washington, D.C.).
Xue, H., L. Incze, D. Xu, N. Wolff & N. Pettigrew, 2008. Connectivity of lobster populations in the coastal Gulf of Maine. Part I: circulation and larval transport potential. Ecol. Modell., 210: 193-211.
Zavala-Hidalgo, J., S. L. Morey & J. J. O’Brien, 2003. Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. Journ. Geophys. Res., 108(C12): 3389.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 553 | 60 | 3 |
Full Text Views | 73 | 5 | 2 |
PDF Views & Downloads | 80 | 8 | 1 |
The distribution and abundance of hippoid zoeal stages offshore Veracruz, southern Gulf of Mexico, and the migration routes of these larvae in the western Atlantic, were analysed. Samples were collected with a Bongo net and larval dispersal was analysed applying the HYCOM hydrodynamical model; particles (virtual larvae) originating from 35 sites were tracked for 77 days. Larvae of Albunea paretii Guérin-Méneville, 1853 were the most abundant, and dispersal simulations indicated that older larvae occurring off Veracruz might originate from Texas. However, a substantial proportion of self-recruitment (7.8%) can occur, mainly due to the seasonal changes in direction of currents over the shelf as well as the high variability in weather conditions. Results also suggest that several generations of A. paretii are needed for the species to reach Veracruz from South America. A hypothetical model regarding the migration routes of A. paretii larvae in the western Atlantic is proposed.
Se analizaron la distribución y la abundancia de los estadios zoea de hippoideos en la costa de Veracruz, sur del Golfo de México, y las rutas de migración de estas larvas en el Atlántico occidental. Las muestras se recolectaron con una red Bongo y se analizó la dispersión de larvas aplicando el modelo hidrodinámico HYCOM; las partículas (larvas virtuales) se originaron en 35 sitios y se rastrearon durante 77 días. Las larvas de Albunea paretii Guérin-Méneville, 1853 fueron las más abundantes y las simulaciones de dispersión indicaron que las larvas de mayor edad registradas en Veracruz podrían originarse en Texas. Sin embargo, una proporción considerable de auto-reclutamiento (7.8%) puede suceder debido principalmente a los cambios estacionales en la dirección de las corrientes sobre la plataforma y a la alta variabilidad en las condiciones climáticas. Los resultados también sugieren que se necesitan varias generaciones de A. paretii para que la especie llegue a Veracruz desde Sudamérica. Se propone un modelo hipotético de las rutas de migración de larvas de A. paretii en el Atlántico occidental.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 553 | 60 | 3 |
Full Text Views | 73 | 5 | 2 |
PDF Views & Downloads | 80 | 8 | 1 |