Many shore crabs exhibit juvenile colour pattern polymorphism on their carapace, which helps avoid predation through camouflage. However, colour pattern polymorphism has been described only in a limited number of species, and its quantitative descriptions are rare. Here, we studied the Asian grapsid crab Hemigrapsus penicillatus to describe its polymorphic dichromatic carapace patterns. We specifically examined how dichromatic patterns and the degree of pattern polymorphism change as size increases and whether sexual/size differences exist in carapace patterns. Our results showed that H. penicillatus exhibits polymorphic forms in both the juvenile and adult stages. Additionally, compared with males, females were more likely to exhibit dichromatic carapace patterns and had a larger light-coloured area on their carapace. Estimation of the likelihood of the carapace being light or dark coloured suggested that certain areas on the carapace are less variable than other areas. We discuss potential adaptive explanations for our results.
Beaucoup de crabes côtiers présentent un polymorphisme juvénile du patron de couleur qui aide à éviter la prédation grâce au camouflage. Cependant, le polymorphisme du patron de couleur a été décrit seulement chez un nombre limité d’espèces, et ses descriptions quantitatives sont rares. Ici, nous avons étudié le crabe Grapsidae asiatique Hemigrapsus penicillatus pour décrire les patrons polymorphiques bicolores de sa carapace. Nous avons examiné spécialement comment les patrons de couleur dichromatiques et le degré de polymorphisme du patron de couleur changent quand la taille augmente et si des différences sexe/taille apparaissent dans les patrons de la carapace. Nos résultats ont montré que H. penicillatus présentait des formes polymorphiques à la fois chez les juvéniles et chez les stades adultes. De plus, comparées aux mâles, les femelles présentaient plus souvent des patrons de carapace bicolores et avaient une plus grande zone de couleur claire sur leur carapace. L’estimation de la probabilité de la carapace d’être de couleur claire ou foncée suggère que certaines zones de la carapace sont moins variables que d’autres. Nous discutons des explications adaptatives potentielles de nos résultats.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Allen, J. A. & B. Clarke, 1968. Evidence for apostatic selection by wild passerines. Nature, 220: 501-502.
Bond, A. B. & A. C. Kamil, 2002. Visual predators select for crypticity and polymorphism in virtual prey. Nature, 415: 609.
Boratynski, Z., J. C. Brito, J. C. Campos, M. Karala & T. Mappes, 2014. Large spatial scale of the phenotype-environment color matching in two cryptic species of African desert jerboas (Dipodidae: Jaculus). PLoS One, 9: e94342.
Brose, U., T. Jonsson, E. L. Berlow, P. Warren, C. Banasek-Richter, L. F. Bersier, J. L. Blanchard, et al., 2006. Consumer-resource body-size relationships in natural food webs. Ecology, 87: 2411-2417.
Caro, T., 2018. The functional significance of coloration in crabs. Biol. J. Linn. Soc., 124: 1-10.
Caro, T., E. Cluff & V. M. Morgan, 2019. Color polymorphism and protective coloration in coconut crabs. Ethol. Ecol. Evol., 31: 514-525.
Cott, H. B., 1940. Adaptive coloration in animals. (Methuen, London).
Duermit, E., P. R. Kingsley-Smith & D. H. Wilber, 2016. Habitat-related phenotypic variation in adult western Atlantic stone crabs (Menippe mercenaria Say, 1818) (Decapoda: Brachyura). J. Crust. Biol., 36: 163-171.
Gray, S. M. & J. S. McKinnon, 2007. Linking color polymorphism maintenance and speciation. Trends. Ecol. Evol., 22: 71-79.
Hogarth, P. J., 1975. Pattern polymorphism and predation in the shore crab, Carcinus maenas (L.). Crustaceana, 28: 316-319.
Jensen, G. C. & M. S. Egnotovich, 2015. A whiter shade of male: color background matching as a function of size and sex in the yellow shore crab Hemigrapsus oregonensis (Dana, 1851). Curr. Zool., 61: 729-738.
Krause-Nehring, J., J. M. Starck & A. R. Palmer, 2010. Juvenile color polymorphism in the red rock crab, Cancer productus: patterns, causes, and possible adaptive significance. Zoology, 113: 131-139.
Kurihara, Y. & K. Okamoto, 1987. Cannibalism in a grapsid crab, Hemigrapsus penicillatus. Mar. Ecol. Prog. Ser., 41: 123-127.
Kurihara, Y., K. Okamoto & S. Takeda, 1989. Preference of the grapsid crab Hemigrapsus penicillatus (De Haan) for an appropriate aperture. Mar. Freshw. Behav. Phys., 14: 169-179.
Nasir, U. & Z. Faulkes, 2011. Color polymorphism of sand crabs, Lepidopa benedicti (Decapoda: Anomura: Albuneidae). J. Crust. Biol., 31: 240-245.
Palma, A. T. & R. S. Steneck, 2001. Does variable coloration in juvenile marine crabs reduce risk of visual predation? Ecology, 82: 2961-2967.
Pillay, K. K. & Y. Ono, 1978. The breeding cycles of two species of grapsid crabs (Crustacea: Decapoda) from the north coast of Kyushu, Japan. Mar. Biol., 45: 237-248.
Ridler, T. W. & S. Calvard, 1978. Picture thresholding using an iterative selection method. IEEE Trans. Syst. Cybern., (B, Cybern.) 8: 630-632.
Scharf, F. S., F. Juanes & R. A. Rountree, 2000. Predator size-prey size relationships of marine fish predators: interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar. Ecol. Prog. Ser., 208: 229-248.
Smith, J. M., 1982. Evolution and the theory of games. (Cambridge University Press, Cambridge).
Stevens, M., A. E. Lown & L. E. Wood, 2014a. Camouflage and individual variation in shore crabs (Carcinus maenas) from different habitats. PLoS One, 9: e115586.
Stevens, M., A. E. Lown & L. E. Wood, 2014b. Color change and camouflage in juvenile shore crabs Carcinus maenas. Front. Ecol. Evol., 2: 14.
Stevens, M., C. A. Parraga, I. C. Cuthill, J. C. Partridge & T. S. Troscianko, 2007. Using digital photography to study animal coloration. Biol. J. Linn. Soc., 90: 211-237.
Todd, P. A., R. A. Briers, R. J. Ladle & F. Middleton, 2006. Phenotype-environment matching in the shore crab (Carcinus maenas). Mar. Biol., 148: 1357-1367.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 577 | 44 | 2 |
Full Text Views | 89 | 24 | 2 |
PDF Views & Downloads | 144 | 53 | 2 |
Many shore crabs exhibit juvenile colour pattern polymorphism on their carapace, which helps avoid predation through camouflage. However, colour pattern polymorphism has been described only in a limited number of species, and its quantitative descriptions are rare. Here, we studied the Asian grapsid crab Hemigrapsus penicillatus to describe its polymorphic dichromatic carapace patterns. We specifically examined how dichromatic patterns and the degree of pattern polymorphism change as size increases and whether sexual/size differences exist in carapace patterns. Our results showed that H. penicillatus exhibits polymorphic forms in both the juvenile and adult stages. Additionally, compared with males, females were more likely to exhibit dichromatic carapace patterns and had a larger light-coloured area on their carapace. Estimation of the likelihood of the carapace being light or dark coloured suggested that certain areas on the carapace are less variable than other areas. We discuss potential adaptive explanations for our results.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 577 | 44 | 2 |
Full Text Views | 89 | 24 | 2 |
PDF Views & Downloads | 144 | 53 | 2 |