Anthropogenic activities can cause important changes in aquatic ecosystems, such as warming due to climate change, nutrient loading from agricultural runoff and urban areas, and decreased concentrations of oxygen in bottom waters. These changes may lead to impacts on both organism performance and ecosystem functionality. Studying planktonic species that form an aquatic ecosystem’s foundation is an important step towards understanding the entire food web and predicting how it may respond to a changing environment. One important planktonic species in the Laurentian Great Lakes is the invasive calanoid copepod Eurytemora carolleeae (formerly considered part of the Eurytemora affinis species complex). This study analyzes the metabolic activity of E. carolleeae from Green Bay, Lake Michigan, U.S.A. using two different methods, over a range of temperatures from 9 to 26°C. Total oxygen consumption was measured directly using a micropulse oxygen probe system, and the activity of aerobic metabolic enzymes in the electron transport system (ETS) was quantified using in vitro reduction of iodonitrotetrazolium chloride (INT). Respiration rate of E. carolleeae increases approximately linearly from 9 to 26°C. Measurements of ETS activity indicate that the copepod’s metabolic enzymes have an Arrhenius activation energy of 46.5 ± 15.6 kJ/mol with a thermal maximum between 22 and 26°C. Overall, E. carolleeae ETS rates increased by approximately 7% per °C over the range 9 to 22°C. This thermal limit has implications for future performance of this species, as the combination of higher temperatures and disappearance of oxygenated colder-water refuges may limit E. carolleeae’s success in the Green Bay system following warmer climate and increased nutrient conditions.
Les activités anthropiques peuvent causer des changements importants dans les écosystèmes aquatiques, comme un réchauffement dû au changement climatique, un enrichissement en nutriments par le ruissellement agricole et les zones urbaines, et une diminution de la concentration en oxygène des eaux profondes. Ces changements peuvent entrainer des impacts sur les performances des organismes et le fonctionnement des écosystèmes. Etudier les espèces planctoniques qui forment la base de l’écosystème aquatique est une étape importante vers la compréhension du réseau trophique, et prédire comment il pourrait répondre à un changement d’environnement. Une espèce planctonique importante des grands lacs laurentiens est le copépode calanoïde invasif Eurytemora carolleeae (considéré antérieurement comme faisant partie de l’espèce Eurytemora affinis). Cette étude analyse l’activité métabolique de E. carolleeae de Green Bay, Lac Michigan, U.S.A., en utilisant deux méthodes, sur une échelle de températures de 9° à 26°C. La consommation d’oxygène a été mesurée directement avec une sonde à oxygène, et l’activité des enzymes du métabolisme aérobie dans le système de transport des électrons (ETS) a été quantifiée par la réduction in vitro du chlorure d’iodonitrotetrazolium (INT). Le taux respiratoire de E. carolleeae augmente linéairement de 9° à 26°C. Les mesures de l’activité ETS indiquent que les enzymes métaboliques du copépode ont une énergie d’activation d’Arrhenius de 46,5 ± 15,6 kJ/mol avec un maximum thermique entre 22° et 26°C. Globalement les taux ETS de E. carolleeae ont augmenté d’approximativement 7% par °C sur l’intervalle de 9° à 22°C. Cette limite thermale a des implications pour les performances futures de cette espèce, la combinaison de températures plus hautes et la disparition des eaux plus froides oxygénées comme refuge pourrait limiter le succès de E. carolleeae dans le système de Green Bay à la suite d’un réchauffement climatique et d’une augmentation des conditions de nutrition.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Adrian, R., S. Hansson, B. Sandin, B. De Stasio & U. Larsson, 1999. Effects of food availability and predation on a marine zooplankton community — a study on copepods in the Baltic Sea. International Review of Hydrobiology, 84: 609-626. DOI:10.1002/iroh.199900055.
Alekseev, V. R. & A. Souissi, 2011. A new species within the Eurytemora affinis complex (Copepoda: Calanoida) from the Atlantic coast of U.S.A., with observations on eight morphologically different European populations. Zootaxa, 2767: 41-56.
Anderson, D. V. & D. Clayton, 1959. Plankton in Lake Ontario: 1-7. (Ontario Department of Lands and Forests, Maple, Ontario).
Balcer, M. D., N. L. Korda & S. I. Dodson, 1984. Zooplankton of the Great Lakes: 1-175. (The University of Wisconsin Press, Madison, WI).
Båmstedt, U., 1980. ETS activity as an estimator of respiratory rate of zooplankton populations. The significance of variations in environmental factors. Journal of Experimental Marine Biology and Ecology, 42: 267-283. DOI:10.1016/0022-0981(80)90181-1.
Barthel, K. G., 1983. Food uptake and growth efficiency of Eurytemora affinis (Copepoda: Calanoida). Marine Biology, 74: 269-274. DOI:10.1007/BF00403450.
Boak, A. C. & R. Goulder, 1983. Bacterioplankton in the diet of the calanoid copepod Eurytemora sp. in the Humber estuary. Marine Biology, 73: 139-149. DOI:10.1007/BF00406881.
Cammen, L. M., S. Corwin & J. P. Christensen, 1990. Electron transport system (ETS) activity as a measure of benthic macrofaunal metabolism. Marine Ecology Progress Series, 65: 171-182. DOI:10.3354/meps065171.
De Stasio, B. T., M. B. Schrimpf, A. E. Beranek & W. C. Daniels, 2008. Increased chlorophyll a, phytoplankton abundance, and cyanobacteria occurrence following invasion of Green Bay, Lake Michigan by dreissenid mussels. Aquatic Invasions, 3: 21-27. DOI:10.3391/ai.2008.3.1.5.
De Stasio, B. T., M. Schrimpf & B. Cornwell, 2014. Phytoplankton communities in Green Bay, Lake Michigan after invasion by dreissenid mussels: Increased dominance by cyanobacteria. Diversity, 6: 681-704. DOI:10.3390/d6040681.
Devol, A. H. & T. T. Packard, 1978. Seasonal changes in respiratory enzyme activity and productivity in Lake Washington microplankton. Limnology and Oceanography, 23: 104-111. DOI:10.4319/lo.1978.23.1.0104.
Engström-Öst, J., N. Barrett, A. Brutemark, A. Vehmaa, A. Dwyer, A.-K. Almen & B. T. De Stasio, 2017. Feeding, survival, and reproduction of two populations of Eurytemora (Copepoda) exposed to local toxic cyanobacteria. Journal of Great Lakes Research, 43: 1091-1100. DOI:10.1016/j.jglr.2017.09.009.
Gannon, J. E., 1974. The crustacean zooplankton of Green Bay, Lake Michigan: 28-51. (17th Conference of Great Lakes Research; Internat. Assoc. Great Lakes Res., Hamilton, Ontario).
Gerber, L., C. E. Lee, E. Grousset, E. Blondeau-Bidet, N. B. Boucheker, C. Lorin-Nebel, M. Charmantier-Daures & G. Charmantier, 2016. The legs have it: in situ expression of ion transporters V-type H+-ATPase and Na+/K+-ATPase in the osmoregulatory leg organs of the invading copepod Eurytemora affinis. Physiological and Biochemical Zoology, 89: 233-250. DOI:10.1086/686323.
Gyllenberg, G. & G. Lundqvist, 1978. Oxygen consumption of Eurytemora hirundoides nauplii and adults as a function of salinity. Annales Zoologici Fennici, 15: 328-330.
Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 1-9.
Heine, K. B., A. Abebe, A. E. Wilson & W. R. Hood, 2019. Copepod respiration increases by 7% per °C increase in temperature: a meta-analysis. Limnology and Oceanography Letters, 4: 53-61. DOI:10.1002/lol2.10106.
Hernández-Léon, S., 2000. Enzymatic method — electron transfer system. In: R. Harris, P. Wiebe, J. Lenz, H. R. Skjoldal & M. Huntley (eds.), ICES zooplankton methodology manual: 506-532. (Academic Press, San Diego, CA).
Hernandez-León, S. & M. Gómez, 1996. Factors affecting the respiration/ETS ratio in marine zooplankton. Journal of Plankton Research, 18: 239-255. DOI:10.1093/plankt/18.2.239.
Hernández-Léon, S. & T. Ikeda, 2005. Zooplankton respiration. In: P. A. del Giorgio & P. J. L. B. Williams (eds.), Respiration in aquatic ecosystems: 57-82. (Oxford University Press, New York, NY).
Ikeda, T., 1977. The effect of laboratory conditions on the extrapolation of experimental measurements to the ecology of marine zooplankton. IV. Changes in respiration and excretion rates of boreal zooplankton species maintained under fed and starved conditions. Marine Biology, 252: 241-252. DOI:10.1007/BF00394910.
Ikeda, T., Y. Kanno, K. Ozaki & A. Shinada, 2001. Metabolic rates of epipelagic marine copepods as a function of body mass and temperature. Marine Biology, 139: 587-596. DOI:10.1007/s002270100608.
King, F. D. & T. T. Packard, 1975. Respiration and the activity of the respiratory electron transport system in marine zooplankton. Limnology and Oceanography, 20: 849-854. DOI:10.4319/lo.1975.20.5.0849.
Kiørboe, T., F. Møhlenberg & K. Hamburger, 1985. Bioenergetics of the planktonic copepod Acartia tonsa: relation between feeding, egg production and respiration, and composition of specific dynamic action. Marine Ecology Progress Series, 26: 85-97. DOI:10.3354/meps026085.
Kipp, R. M., A. J. Benson, J. Larson, T. H. Makled & A. Fusaro, 2013. Eurytemora affinis Poppe, 1880. In: Nonindigenous aquatic species database. (U.S. Geological Survey, Gainesville, FL). Retrieved 17 May 2019, from: https://nas.er.usgs.gov/queries/FactSheet.aspx?SpeciesID=178.
Lampert, W., 1984. The measurement of respiration. In: J. A. Downing & F. H. Rigler (eds.), A manual on methods for the assessment of secondary productivity in fresh waters: 413-468. (Blackwell Scientific Publications, Oxford, U.K.).
Lee, C. E., 1999. Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution, 53: 1423-1434. DOI:10.1111/j.1558-5646.1999.tb05407.x.
Lee, C. E., M. Kiergaard, G. W. Gelembiuk, B. D. Eads & M. Posavi, 2011. Pumping ions: rapid parallel evolution of ionic regulation following habitat invasions. Evolution, 65: 2229-2244. DOI:10.1111/j.1558-5646.2011.01308.x.
Lee, C. E., W. E. Moss, N. Olson, K. F. Chau, Y.-M. Chang & K. E. Johnson, 2013. Feasting in fresh water: impacts of food concentration on freshwater tolerance and the evolution of food × salinity response during the expansion from saline into fresh water habitats. Evolutionary Applications, 6: 673-689. DOI:10.1111/eva.12054.
Lee, C. E., J. L. Remfert & G. W. Gelembiuk, 2003. Evolution of physiological tolerance and performance during freshwater invasions. Integrative and Comparative Biology, 43: 439-449. DOI:10.1093/icb/43.3.439.
Lloyd, S. S., D. T. Elliott & M. R. Roman, 2013. Egg production by the copepod, Eurytemora affinis, in Chesapeake Bay turbidity maximum regions. Journal of Plankton Research, 35: 299-308. DOI:10.1093/plankt/fbt003.
Mills, E. L., J. H. Leach, J. T. Carlton & C. L. Secor, 1993. Exotic species in the Great Lakes: a history of biotic crises and anthropogenic introductions. Journal of Great Lakes Research, 19: 1-54. DOI:10.1016/S0380-1330(93)71197-1.
Owens, T. G. & F. D. King, 1975. The measurement of respiratory electron-transport-system activity in marine zooplankton. Marine Biology, 30: 27-36. DOI:10.1007/BF00393750.
Packard, T. T., 1985. Measurement of electron transport activity of marine microplankton. Advances in Aquatic Microbiology, 3: 208-235.
Packard, T. T., A. H. Devol & F. D. King, 1975. The effect of temperature on the respiratory electron transport system in marine plankton. Deep-Sea Research and Oceanographic Abstracts, 22: 237-249. DOI:10.1016/0011-7471(75)90029-7.
Paffenhöfer, G.-A., 2006. Oxygen consumption in relation to motion of marine planktonic copepods. Marine Ecology Progress Series, 317: 187-192.
Pascal, L. & V. C. Chong, 2016. Does developmental temperature modulate copepods respiratory activity through adult life? Journal of Plankton Research, 38: 1215-1224. DOI:10.1093/plankt/fbw058.
Rai, H., 2002. Electron transport system (ETS activity) as a measure of respiratory activity of microorganisms. In: D. V. Subba Rao & A. A. Lisse (eds.), Pelagic ecology methodology: 169-175. (Balkema Publishers, Rotterdam).
Raymont, J. E. G., 1959. The respiration of some planktonic copepods. Limnology and Oceanography, 4: 479-491. DOI:10.4319/lo.1959.4.4.0479.
Richman, S., S. A. Bohon & S. E. Robbins, 1980. Grazing interactions among freshwater calanoid copepods. In: W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities: 219-233. (The University Press of New England, Lebanon, NH).
Richman, S. & S. I. Dodson, 1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnology and Oceanography, 28: 948-956. DOI:10.4319/lo.1983.28.5.0948.
Roddie, B. D., R. J. G. Leakey & A. J. Berry, 1984. Salinity-temperature tolerance and osmoregulation in Eurytemora affinis (poppe) (Copepoda, Calanoida) in relation to its distribution in the zooplankton of the upper reaches of the Forth Estuary. Journal of Experimental Marine Biology and Ecology, 79: 191-211. DOI:10.1016/0022-0981(84)90219-3.
Simčič, T. & A. Brancelj, 2004. Respiratory electron transport system (ETS) activity as an estimator of the thermal tolerance of two Daphnia hybrids. Journal of Plankton Research, 26: 525-534. DOI:10.1093/plankt/fbh056.
Sukhikh, N., A. Souissi, S. Souissi, A.-C. Holl, N. V. Schizas & V. Alekseev, 2019. Life in sympatry: coexistence of native Eurytemora affinis and invasive Eurytemora carolleeae in the gulf of Finland (Baltic Sea). Oceanologia, 61: 227-238. DOI:10.1016/j.oceano.2018.11.002.
Torke, B., 2001. The distribution of calanoid copepods in the plankton of Wisconsin lakes. Hydrobiologia, 453: 351-365. DOI:10.1023/A:1013185916287.
Vasquez, A. A., P. L. Hudson, M. Fujimoto, K. Keeler, P. M. Armenio & J. L. Ram, 2016. Eurytemora carolleeae in the Laurentian Great Lakes revealed by phylogenetic and morphological analysis. Journal of Great Lakes Research, 42: 802-811. DOI:10.1016/j.jglr.2016.04.001.
Winkler, G., J. J. Dodson & C. E. Lee, 2008. Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod Eurytemora affinis. Molecular Ecology, 17: 415-430. DOI:10.1111/j.1365-294X.2007.03480.x.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 520 | 83 | 14 |
Full Text Views | 41 | 8 | 2 |
PDF Views & Downloads | 42 | 14 | 4 |
Anthropogenic activities can cause important changes in aquatic ecosystems, such as warming due to climate change, nutrient loading from agricultural runoff and urban areas, and decreased concentrations of oxygen in bottom waters. These changes may lead to impacts on both organism performance and ecosystem functionality. Studying planktonic species that form an aquatic ecosystem’s foundation is an important step towards understanding the entire food web and predicting how it may respond to a changing environment. One important planktonic species in the Laurentian Great Lakes is the invasive calanoid copepod Eurytemora carolleeae (formerly considered part of the Eurytemora affinis species complex). This study analyzes the metabolic activity of E. carolleeae from Green Bay, Lake Michigan, U.S.A. using two different methods, over a range of temperatures from 9 to 26°C. Total oxygen consumption was measured directly using a micropulse oxygen probe system, and the activity of aerobic metabolic enzymes in the electron transport system (ETS) was quantified using in vitro reduction of iodonitrotetrazolium chloride (INT). Respiration rate of E. carolleeae increases approximately linearly from 9 to 26°C. Measurements of ETS activity indicate that the copepod’s metabolic enzymes have an Arrhenius activation energy of 46.5 ± 15.6 kJ/mol with a thermal maximum between 22 and 26°C. Overall, E. carolleeae ETS rates increased by approximately 7% per °C over the range 9 to 22°C. This thermal limit has implications for future performance of this species, as the combination of higher temperatures and disappearance of oxygenated colder-water refuges may limit E. carolleeae’s success in the Green Bay system following warmer climate and increased nutrient conditions.
Les activités anthropiques peuvent causer des changements importants dans les écosystèmes aquatiques, comme un réchauffement dû au changement climatique, un enrichissement en nutriments par le ruissellement agricole et les zones urbaines, et une diminution de la concentration en oxygène des eaux profondes. Ces changements peuvent entrainer des impacts sur les performances des organismes et le fonctionnement des écosystèmes. Etudier les espèces planctoniques qui forment la base de l’écosystème aquatique est une étape importante vers la compréhension du réseau trophique, et prédire comment il pourrait répondre à un changement d’environnement. Une espèce planctonique importante des grands lacs laurentiens est le copépode calanoïde invasif Eurytemora carolleeae (considéré antérieurement comme faisant partie de l’espèce Eurytemora affinis). Cette étude analyse l’activité métabolique de E. carolleeae de Green Bay, Lac Michigan, U.S.A., en utilisant deux méthodes, sur une échelle de températures de 9° à 26°C. La consommation d’oxygène a été mesurée directement avec une sonde à oxygène, et l’activité des enzymes du métabolisme aérobie dans le système de transport des électrons (ETS) a été quantifiée par la réduction in vitro du chlorure d’iodonitrotetrazolium (INT). Le taux respiratoire de E. carolleeae augmente linéairement de 9° à 26°C. Les mesures de l’activité ETS indiquent que les enzymes métaboliques du copépode ont une énergie d’activation d’Arrhenius de 46,5 ± 15,6 kJ/mol avec un maximum thermique entre 22° et 26°C. Globalement les taux ETS de E. carolleeae ont augmenté d’approximativement 7% par °C sur l’intervalle de 9° à 22°C. Cette limite thermale a des implications pour les performances futures de cette espèce, la combinaison de températures plus hautes et la disparition des eaux plus froides oxygénées comme refuge pourrait limiter le succès de E. carolleeae dans le système de Green Bay à la suite d’un réchauffement climatique et d’une augmentation des conditions de nutrition.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 520 | 83 | 14 |
Full Text Views | 41 | 8 | 2 |
PDF Views & Downloads | 42 | 14 | 4 |