Save

Embryonic and larval development of the caridean shrimp Palaemon argentinus (Decapoda, Caridea): effects of salinity and diet

In: Crustaceana
View More View Less
  • 1 Universidad de Buenos Aires, CONICET, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Biología de la Reproducción y el Crecimiento de Crustáceos Decápodos, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
Download Citation Get Permissions

Access options

Get access to the full article by using one of the access options below.

Institutional Login

Log in with Open Athens, Shibboleth, or your institutional credentials

Login via Institution

Purchase

Buy instant access (PDF download and unlimited online access):

€29.95$34.95

Abstract

The caridean shrimp Palaemon argentinus is a species of commercial and ecological interest. Its numerous larval stages, the lack of knowledge on their nutritional requirements, and their ability to survive in a wide range of salinities raise questions on the optimum conditions for larval rearing in captivity. The present study was aimed at evaluating embryonic development under different salinities and larval development under different combinations of salinities and diet regimes, in order to define alternative, cheaper culture conditions. We tested salinities usually encountered by the species in natural habitats (0.1, 1 and 5 ppt) and a highly protein-inert diet (Tetracolor®) as a potential replacement for live food (nauplii of Artemia salina). The incubation period and fecundity were similar among salinity treatments. Overall, the number of survival days and percentage of zoeae that moulted two, three and four times were higher when embryogenesis occurred at 5 ppt and when larvae were exposed to 5 ppt. These results suggest that the conditions experienced by embryos affect the performance of the first larval stages, and probably reflect the lower energetic requirements of zoeae to osmoregulate as water and haemolymph osmolarity become closer. On the other hand, larval performance was better when fed A. salina nauplii than Tetracolor®. The latter may not cover the nutritional requirements of zoeae or may have low digestibility due to insufficient enzymes in the undeveloped larval digestive system. Based on the present results, we conclude that a salinity of 5 ppt combined with a diet consisting of Artemia sp. nauplii is optimal for larval culture at early stages.

Content Metrics

All Time Past Year Past 30 Days
Abstract Views 306 306 25
Full Text Views 8 8 0
PDF Views & Downloads 16 16 0