The effects of ocean acidification on marine organisms are of increasing concern. Exopalaemon carinicauda is an important economic shrimp. However, little is known about the transcriptome data for shrimp in response to seawater acidification stress. In this study, the transcriptome of E. carinicauda in response to seawater acidification stress was recorded using the Illumina RNA-sequencing. A total of 59 990 unigenes from high-quality transcripts were generated. Of all annotated unigenes, 18 386 and 17 681 unigenes had significant matches with sequences in the NR, and GO databases, respectively. A total of 183 differentially expressed genes (DEGs) could be screened, of which 119 DEGs were up-regulated and 64 DEGs were down-regulated. KEGG enrichment analysis showed these DEGs were primarily enriched in the pathways of lysosome, carbohydrate digestion and absorption, apoptosis, and alpha-linolenic acid metabolism. These results indicate that seawater acidification stress leads to the activation of apoptosis and the activity of the energy metabolism system in order to resist the external environmental stress and ensure the continuity of the normal life metabolism, and thus the energy supply of the organism. These data will be helpful to further study the molecular mechanisms of shrimp resistance to seawater acidification stress.
Les effets de l’acidification des océans sur les organismes marins sont une préoccupation croissante. Exopalaemon carinicauda est une crevette économiquement importante. Cependant, peu de choses sont connues sur son transcriptome en réponse à un stress d’acidification de l’eau de mer. Dans cette étude, le transcriptome de E. carinicauda en réponse à un stress d’acidification marine a été étudié par séquençage d’ARN Illumina. Un total de 59 990 uni-gènes de transcrits de haute qualité a été généré. Parmi tous les uni-gènes annotés, 18 386 et 17 681 montraient une correspondance significative avec, respectivement, des séquences des bases de données NR et GO. Un total de 183 gènes différentiellement exprimés (DEGs) peuvent être criblés, parmi lesquels 119 DEGs ont été régulés à la hausse et 64 à la baisse. Les analyses d’enrichissement KEGG ont montré que ces DEGs étaient principalement enrichis dans les voies des lysosomes, la digestion et l’absorption des glucides, l’apoptose et le métabolisme de l’acide alpha-linolénique. Ces résultats montrent que le stress d’acidification de l’eau de mer conduit à une activation de l’apoptose et de l’activité du métabolisme énergétique afin de résister au stress environnemental externe et assurer la continuité d’un métabolisme de vie normal, et donc de l’apport d’énergie à l’organisme. Ces données seront utiles aux futures études des mécanismes moléculaires de la résistance des crevettes à un stress d’acidification de l’eau de mer.
Purchase
Buy instant access (PDF download and unlimited online access):
Institutional Login
Log in with Open Athens, Shibboleth, or your institutional credentials
Personal login
Log in with your brill.com account
Beniash, E., A. Ivanina, N. S. Lieb, I. Kurochkin & I. M. Sokolova, 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica (Gmelin). Marine Ecology Progress Series, 419: 95-108.
Caldeira, K. & M. E. Wickett, 2003. Anthropogenic carbon and ocean pH. Nature, 425: 365-365.
Caldeira, K. & M. E. Wickett, 2005. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research – Oceans, 110: C09S04. DOI:10.1029/2004JC002671.
Carter, H. A., L. Ceballos-Osuna, N. A. Miller & J. H. Stillman, 2013. Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. Journal of Experimental Biology, 216: 1412-1422.
Ceballos-Osuna, L., H. A. Carter, N. A. Miller & J. H. Stillman, 2013. Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. Journal of Experimental Biology, 216: 1405-1411.
Chen, L., M. Zhang & L. Sun, 2011. Identification and expressional analysis of two cathepsins from half-smooth tongue sole (Cynoglossus semilaevis). Fish & Shellfish Immunology, 31: 1270-1277.
Chen, Y., W. F. Dong, H. Dai, B. C. Yang & Z. F. Chen, 2017. Influence of CO2-induced seawater acidification on the antioxidant parameters,development and reproduction in Tigriopus japonicus. Chinese Journal of Ecology, 36: 144-149.
Dhami, R., X. He & E. Schuchman, 2010. Acid sphingomyelinase deficiency attenuates bleomycin-induced lung inflammation and fibrosis in mice. Cellular Physiology and Biochemistry, 26: 749-760.
Dias, B. B., B. Hart, C. W. Smart & J. M. Hall-Spencer, 2010. Modern seawater acidification: the response of Foraminifera to high-CO2 conditions in the Mediterranean Sea. Journal of the Geological Society, 167: 843-846.
Evans, T. G., F. Chan, B. A. Menge & G. E. Hofmann, 2013. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Molecular Ecology, 22: 1609-1625.
Feely, R. A., S. R. Alin, B. Carter, N. Bednaršek, B. Hales, F. Chan, T. M. Hill, B. Gaylord, E. Sanford, R. H. Byrne, C. L. Sabine, D. Greeley & L. Juranek, 2016. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuarine, Coastal and Shelf Science, 183: 260-270.
Ferrari, M. C. O., M. I. McCormick, P. L. Munday, M. G. Meekan, D. L. Dixson, O. Lonnstedt & D. P. Chivers, 2011. Putting prey and predator into the CO2 equation — qualitative and quantitative effects of ocean acidification on predator-prey interactions. Ecology Letters, 14: 1143-1148.
Grabherr, M. G., B. J. Haas, M. Yassour & J. Z. Levin, 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29: 644-652.
Gravinese, P. M., 2018. Ocean acidification impacts the embryonic development and hatching success of the Florida stone crab, Menippe mercenaria. Journal of Experimental Marine Biology and Ecology, 500: 140-146.
Hofmann, G. E. & A. E. Todgham, 2010. Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annual Review of Physiology, 72: 127-145.
Honisch, B., A. Ridgwell, D. N. Schmidt, E. Thomas, S. J. Gibbs, A. Sluijs, R. Zeebe, L. Kump, R. C. Martindale, S. E. Greene, W. Kiessling, J. Ries, J. C. Zachos, D. L. Royer, S. Barker, T. M. Marchitto, R. Moyer, C. Pelejero, P. Ziveri, G. L. Foster & B. Williams, 2012. The geological record of ocean acidification. Science, 335: 1058-1063.
Hüning, A. K., F. Melzner, J. Thomsen, M. A. Gutowska, L. Krämer, S. Frickenhaus, P. Rosenstiel, H. O. Pörtner, E. E. R. Philipp & M. Lucassen, 2012. Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Marine Biology, 160: 1845-1861.
Kroeker, K. J., R. L. Kordas, R. N. Crim & G. G. Singh, 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters, 13: 1419-1434.
Kurihara, H., S. Shimode & Y. Shirayama, 2004. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Marine Pollution Bulletin, 49: 721-727.
Li, B. & C. Dewey, 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12: 323.
Li, F., J. H. Shui, Y. Zang, Y. Sun & F. H. Mu, 2018. Effect of ocean acidification on development, reproduction and ATPase activity of Tigriopus japonicus Mori, 1938. Transactions of Oceanology and Limnology, 4: 44-50.
Liu, B., M. Fang, Y. Hu, B. Huang, N. Li, C. Chang, R. Huang, X. Xu, Z. Yang, Z. Chen & W. Liu, 2014. Hepatitis B virus X protein inhibits autophagic degradation by impairing lysosomal maturation. Autophagy, 10: 416-430.
Long, W. C., K. M. Swiney, C. Harris, H. N. Page & R. J. Foy, 2013. Effects of ocean acidification on juvenile red king crab (Paralithodes camtschaticus) and Tanner crab (Chionoecetes bairdi) growth, condition, calcification, and survival. PLoS ONE, 8: e606959.
Maas, A. E., G. L. Lawson & A. M. Tarrant, 2015. Transcriptome-wide analysis of the response of the thecosome pteropod Clio pyramidata to short-term CO2 exposure. Comparative Biochemistry and Physiology, (Part D: Genomics and Proteomics), 16: 1-9.
MacFadden-Murphy, E., L. Roussel, G. Martel, J. Bérubé & S. Rousseau, 2017. Decreasing SMPD1 activity in BEAS-2B bronchial airway epithelial cells results in increased NRF2 activity, cytokine synthesis and neutrophil recruitment. Biochemical and Biophysical Research Communications, 482: 645-650.
Maksimainen, M., S. Paavilainen, N. Hakulinen & J. Rouvinen, 2012. Structural analysis, enzymatic characterization, and catalytic mechanisms of β-galactosidase from Bacillus circulans sp. alkalophilus. FEBS Journal, 279: 1788-1798.
Man, S. M. & T.-D. Kanneganti, 2016. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy, 12: 2504-2505.
Mao, X., T. Cai, J. G. Olyarchuk & L. P. Wei, 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21: 3787-3793.
Opreanu, M., M. Tikhonenko, S. Bozack, T. A. Lydic, G. E. Reid, K. M. Mcsorley, A. Sochacki, G. I. Perez, W. J. Esselman, T. Kern, R. Kolesnick, M. B. Grant & J. V. Busik, 2011. The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models. Diabetes, 60: 2370-2378.
Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R. G. Najjar, G. K. Plattner, K. B. Rodgers, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Slater, I. J. Totterdell, M. F. Weirig, Y. Yamanaka & A. Yool, 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437: 681-686.
Parker, L. M., P. M. Ross, W. A. O’Connor, H. O. Pörtner, E. Scanes & J. M. Wright, 2013. Predicting the response of molluscs to the impact of ocean acidification. Biology, 2: 651-692.
Pierrot, D., E. Lewis & D. W. R. Wallace, 2006. MS Excel program developed for CO2 system calculations. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, USD Department of Energy, Oak Ridge, TN).
Riebesell, U., I. Zondervan, B. Rost, P. D. Tortell, R. E. Zeebe & F. M. M. Morel, 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407: 364-367.
Ries, J. B., A. L. Cohen & D. C. McCorkle, 2009. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology, 37: 1131-1134.
Settembre, C., A. Fraldi, D. L. Medina & A. Ballabio, 2013. Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nature Reviews Molecular Cell Biology, 14: 283-296.
Turk, B., D. Turk & V. Turk, 2000. Lysosomal cysteine proteases: more than scavengers. Biochimica Biophysica Acta, 1477: 98-111.
Vogt, G., 1994. Life-cycle and functional cytology of the hepatopancreatic cells of Astacus astacus (Crustacea, Decapoda). Zoomorphology, 114: 83-101.
Wang, W., X. Wu, Z. Liu, H. Zheng & Y. Cheng, 2014. Insights into hepatopancreatic functions for nutrition metabolism and ovarian development in the crab Portunus trituberculatus: gene discovery in the comparative transcriptome of different hepatopancreas stages. PLoS ONE, 9: e84921.
Wang, X., M. Wang, W. Wang, Z. Liu, J. Xu, Z. Jia, H. Chen, L. Qiu, Z. Lv, L. Wang & L. Song, 2020. Transcriptional changes of Pacific oyster Crassostrea gigas reveal essential role of calcium signal pathway in response to CO2-driven acidification. Science of The Total Environment, 741: 140177.
Wessel, N., S. Martin, A. Badou, P. Dubois, S. Huchette, V. Julia, F. Nunes, E. Harney, C. Paillard & S. Auzoux-Bordenave, 2018. Effect of CO2-induced ocean acidification on the early development and shell mineralization of the European abalone (Haliotis tuberculata). Journal of Experimental Marine Biology and Ecology, 508: 52-63.
Wilden, A., J. Molina, M. Feuerborn, D. Boyle & S. Lee, 2018. Glutamine-dependent lysosome homeostatic changes induced by starvation and lysosome inhibition. Biochimica Biophysica Acta, Molecular Cell Research, 1865: 1356-1367.
Xu, W., J. Xie, H. Shi & C. Li, 2010. Hematodinium infections in cultured ridgetail white prawns, Exopalaemon carinicauda, in eastern China. Aquaculture, 300: 25-31.
Young, M. D., M. J. Wakefield, G. K. Smyth & A. Oshlack, 2010. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 11: R14.
Zervoudaki, S., E. Krasakopoulou, T. Moutsopoulos, M. Protopapa, S. Marro & F. Gazeau, 2017. Copepod response to ocean acidification in a low nutrient–low chlorophyll environment in the NW Mediterranean Sea. Estuarine Coastal and Shelf Science, 186: 152-162.
Zhao, X., Y. Han, B. Chen, B. Xia, K. Qu & G. Liu, 2020. CO2-driven ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses. Chemosphere, 243: 125415.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 426 | 133 | 55 |
Full Text Views | 31 | 2 | 0 |
PDF Views & Downloads | 34 | 3 | 0 |
The effects of ocean acidification on marine organisms are of increasing concern. Exopalaemon carinicauda is an important economic shrimp. However, little is known about the transcriptome data for shrimp in response to seawater acidification stress. In this study, the transcriptome of E. carinicauda in response to seawater acidification stress was recorded using the Illumina RNA-sequencing. A total of 59 990 unigenes from high-quality transcripts were generated. Of all annotated unigenes, 18 386 and 17 681 unigenes had significant matches with sequences in the NR, and GO databases, respectively. A total of 183 differentially expressed genes (DEGs) could be screened, of which 119 DEGs were up-regulated and 64 DEGs were down-regulated. KEGG enrichment analysis showed these DEGs were primarily enriched in the pathways of lysosome, carbohydrate digestion and absorption, apoptosis, and alpha-linolenic acid metabolism. These results indicate that seawater acidification stress leads to the activation of apoptosis and the activity of the energy metabolism system in order to resist the external environmental stress and ensure the continuity of the normal life metabolism, and thus the energy supply of the organism. These data will be helpful to further study the molecular mechanisms of shrimp resistance to seawater acidification stress.
Les effets de l’acidification des océans sur les organismes marins sont une préoccupation croissante. Exopalaemon carinicauda est une crevette économiquement importante. Cependant, peu de choses sont connues sur son transcriptome en réponse à un stress d’acidification de l’eau de mer. Dans cette étude, le transcriptome de E. carinicauda en réponse à un stress d’acidification marine a été étudié par séquençage d’ARN Illumina. Un total de 59 990 uni-gènes de transcrits de haute qualité a été généré. Parmi tous les uni-gènes annotés, 18 386 et 17 681 montraient une correspondance significative avec, respectivement, des séquences des bases de données NR et GO. Un total de 183 gènes différentiellement exprimés (DEGs) peuvent être criblés, parmi lesquels 119 DEGs ont été régulés à la hausse et 64 à la baisse. Les analyses d’enrichissement KEGG ont montré que ces DEGs étaient principalement enrichis dans les voies des lysosomes, la digestion et l’absorption des glucides, l’apoptose et le métabolisme de l’acide alpha-linolénique. Ces résultats montrent que le stress d’acidification de l’eau de mer conduit à une activation de l’apoptose et de l’activité du métabolisme énergétique afin de résister au stress environnemental externe et assurer la continuité d’un métabolisme de vie normal, et donc de l’apport d’énergie à l’organisme. Ces données seront utiles aux futures études des mécanismes moléculaires de la résistance des crevettes à un stress d’acidification de l’eau de mer.
All Time | Past 365 days | Past 30 Days | |
---|---|---|---|
Abstract Views | 426 | 133 | 55 |
Full Text Views | 31 | 2 | 0 |
PDF Views & Downloads | 34 | 3 | 0 |